Биоинженеры и специалисты в микроэлектронике создали первый в мире КМОП-микрочип, который питают молекулы АТФ, являющиеся универсальным источником энергии для всех биохимических процессов, протекающих в живых организмах. То есть такой подход позволяет создавать настоящие "живые" кремниевые электронные приборы.
Учёные создали гибкий датчик из жевательной резинки и углеродных нанотрубок, который может быть использован в фитнес-трекерах и другой носимой электронике, что значительно повысит её чувствительность и точность диагностики.
Первый лазер, прибор для усиления света посредством вынужденного излучения, был изобретен в 1960 году, и всегда был известен как инструмент, который вырабатывает тепловую энергию — либо в качестве рабочего инструмента, либо как побочный эффект работы, либо в кинематографе как оружие для победы над межгалактическими врагами. Однако концентрированные пучки света, испускаемые лазером, никогда не были в состоянии охлаждать жидкость
Исследователи из МГУ имени М.В.Ломоносова в составе международной группы создали сверхбыстрый фотонный переключатель, работающий на кремниевых наноструктурах. Это устройство может стать основой компьютеров будущего и позволить передавать данные с огромной скоростью. Разработка ученых представлена в статье в журнале Nano Letters.
Физики из Франции и России обнаружили, что магнитные атомы в двумерном слое сверхпроводника создают возмущения, которые выглядят как осциллирующие «нанозвезды». «Созвездия» таких возмущений можно будет использовать в квантовой электронике. Результаты исследования опубликованы в престижном научном журнале Nature Physics.
Австралийские исследователи впервые изготовили один из ключевых элементов квантового компьютера из кремния. Они также показали, что два кремниевых транзистора, действующие в роли квантовых битов (или кубитов), могут выполнять сверхбыстрые расчёты.
Полевые транзисторы на основе углеродных нанотрубок являются очень перспективными для применения в микроустройствах, в качестве предельного, лимитированного квантовыми эффектами элемента. В частности, для баллистических транзисторов была предсказана область работы в субтерагерцовом диапазоне, что на порядок выше, чем для обычных полупроводниковых транзисторов. Экспериментально это пока не достижимо, однако частоты порядка 8-10 Ггц были получены при использовании многозатворного транзистора на основе одной углеродной нанотрубки.
Теплопроводнсть графенового монослоя была изучена методом конфокальной микро-рамановской спектроскопии. Чрезвычайно высокая теплопроводность при комнатной температуре, ~ 5000 Вт/мK, делает графен перспективным материалом для применений в микроэлектронике.
Исследователи из Pennsylvania State University смогли разработать методику, позволяющую собрать упорядоченный массив из 2000 нанопроволочных резонаторов.
Материалы на основе кремния очень важны для таких областей знания как микроэлектроника и фотоника. Многие кремниевые устройства основаны на планарной технологии, так как методы получения частиц сферической формы ещё не достаточно развиты. Группа учёных из Мадрида получила сферические частицы поликристаллического кремния и исследовала их свойства.
В номере журнала Nature от 10 января опубликованы сразу две работы, в которых сообщается о повышенных термоэлектрических свойствах кремниевых нанопроводов.
Группа ученых из Vanung University (Тайвань) предложила методику синтеза фотонных кристаллов с использованием монодисперсных микросфер, представляющих собой магнетит, покрытый оксидом кремния. Суперпарамагнитные микросферы формировали фотонный кристалл под действием внешнего магнитного поля.
Международная группа исследователей (Великобритания, Швеция, США и Швейцария) впервые представила метод получения объемного УФ-поглощающего прозрачного материала на основе ZnO и PMMA.
В состоянии равновесия основное состояние графеновых лент с атомами водорода, присоединенными к sp2-атомам углерода вдоль зигзагообразных сторон, должно быть спин-поляризованным. Однако в присутствие баллистического тока обнаружено, что в некотором интервале напряжений стабильны как спин-поляризованное, так и не спин-поляризованное состояния. Эти состояния могут являться битами в бинарной системе хранения информации, состояние которых можно изменять за счет приложенного напряжения и считывать, измеряя ток через наноленту.
Испанские ученые в одной из работ сообщили о получении устройств на основе нанопроводников SnO2 и микромембран. Нанопроводники в таких устройствах были присоединены к микроэлектродам с помощью подходов нанолитографии с использованием сфокусированного ионного пучка.
Прямые эксперименты, позволяющие получить ответ на вопрос об эмиссионной способности боковой поверхности нанотрубки, были поставлены недавно в Univ. of Central Florida, Orlando (США).
Создан прототип амплитудно модулированного демодулятора на основе нанотрубок для модуляции частот до 100 кГц. После этого этот демодулятор был успешно использован для демодуляции в реальном АМ радиоприемнике.
Для обнаружения пьезоэлектрических свойств нанонитей титаната бария к монокристаллу образца прикладывали прямое растягивающее напряжение. При периодическом изменении механического напряжения, генерируемого с помощью прецизионной аппаратуры, наблюдалось периодическая генерация электрического напряжения.
Исследователи из Университета Пекина показали, что лампы накаливания на основе нити из углеродных нанотрубок во многих отношениях превосходят стандартные лампы на основе вольфрамовых нитей и могут послужить повышению конкурентоспособности ламп рассматриваемого класса.
Немецкие ученые создали мельчайшие в мире пирамиды: их высота не превышает нескольких сотен нанометров. Они могут служить в качестве микрополостных оптических резонаторов.
Исследователи IBM показали, что ячейкой хранения информации размером в один бит может выступать отдельный атом, а также создали работающий молекулярный переключатель.
Как показали исследования, проведённые в National Institute of Standards and Technology (NIST), слой рутения толщиной в несколько атомов можно использовать для точной настройки чувствительности и увеличения надёжности магнитных датчиков.
Совместные усилия учёных из Purdue University, Northwestern University и University of Southern California позволили сделать важных шаг на пути создания гибких и прозрачных электронных дисплеев. Результаты их работы были опубликованы в Nature Nanotechnology.
Профессор Ренсслеровского Физического Факультета Сарож Наяк с группой ученых, провели исследование зависимости электрических свойств графена от его длины и ширины. Оказалось, что электрические свойства напрямую зависят от длины элементов, варьируя которую можно менять ширину запрещенной зоны материала.
Ученые из Сеульского Национального Университета (Seoul National University) создали диод белого излучения, покрыв синий диод квантовыми точками из наночастиц (2-6 нм) (CdSe)ZnSe.
Ученые из Центра по Определению Характеристик Наноструктур (Center for Nanostructure Characterization, Georgia Tech) во главе с профессором Джонг Лин Вангом (Zhong Lin Wang) разработали технологию, в основе которой лежит использование сдвоенных пьезоэлектрических и полупроводящих вискеров, например из оксида цинка, для преобразования механической энергии (гидравлической энергии человеческого тела, энергии вибраций, движения и т.д.) в электричество.
Ученые из калифорнийского университета в Риверсдэйле получили суспензию наночастиц оксида железа Fe3O4 в воде, цвет которой можно варьировать с помощью внешнего магнитного поля. Изменение силы магнитного поля приводит к реорганизации сферических наночастиц оксида железа в растворе, и соответственно, к изменению манеры прохождения света через него.
Команда исследователей из Osaka University (Япония) объединили порфириновый комплекс молибдена и полиоксометаллат вольфрама в структуру, названную порфириновым гамбургером.
Ученые из национальной лаборатории Лоуренса Берлея в Калифорнии, Пейдонг Янг (Peidong Yang) и его коллеги, синтезировали вискеры из ниобата калия, KNbO3, имеющие необычные нелинейные оптические свойства.
Международная группа ученых из Соединенных штатов и Италии разработала новый тип запоминающих устройств, соединив между собой вирусы и квантовые точки. «Гибридный» материал может использоваться для создания биосовместимой электроники. Кроме того, новая технология позволяет производить запоминающие устройства высокой плотности недорогим и простым способом.
В Японии был разработан высокоэффективный лазер, работающий при комнатной температуре и способный генерировать стабильные продолжительные импульсы в ближней инфракрасной области спектра.
Группа ученых из США (NIST, George Mason University) и Южной Кореи (Kwangwoon University) разработала гибридное запоминающее устройство, в котором применяются как общепринятые методики, так и используются свойства кремниевых нанопроводов.
Кремний – наиболее важный материал для электронных микросхем и процессоров. Но так как он является непрямозонным полупроводником, он с трудом испускает свет, поэтому многие исследователи пытаются разработать более эффективные светоизлучатели на основе кремния. Физики из Forschungszentrum Dresden-Rossendorf научились получать кремний, светящийся красным и синим цветом.
Исследователи из Национального института стандартов и технологий (НИСТ) в сотрудничестве с учеными из университетов Мэриленда (Maryland) и Ховарда (Howard) разработали технологию получения тонких высокоэффективных светодиодов из нанопроволок.
Компания SONY разработала ультратонкие органические электролюминесцентные дисплеи (OLED) – 11-ти и 27-ми дюймовые прототипы телевизионных панелей нового поколения на основе уникальной технологии “превосходная топ-эмиссия” (super top emission). Выпуск коммерческих образцов менее, чем через два года.
Исследователи из University of Michigan разработали принципиально новый прозрачный электрод. Он представляет собой сетку из электропроводящих металлических проводов, достаточно тонких, чтобы не препятствовать распространению света.
Прототип нового процессора общего назначения был спроектирован группой исследователей из The University of Texas. Революционная технология позволит производить триллион вычислительных операций в секунду.
О создании необычной разновидности органического светодиода (OLED) объявили Гассан Джабур (Ghassan Jabbour) и Цзянь Ли (Jian Li) из университета Аризоны (Arizona State University). Новый тип OLED откроет путь к изготовлению эффективных систем освещения.
Доктор Ю-Лин Лу (Yueh-Lin (Lynn) Loo) из Университета Техаса в Остине модифицировала полианилин таким образом, что его проводимость может «настраиваться» непосредственно в процессе производства. Разработка позволит создавать необходимые компоненты для электронных приборов недалекого будущего.
В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.
Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.
Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся
в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.