Физики из США обнаружили, как можно использовать обычные лампы дневного света для создания ключевого компонента квантового компьютера.
Американские ученые случайным образом нашли крайне простой способ "рисовать" квантовые транзисторы и прочие элементы квантовых компьютеров на поверхности так называемых топологических изоляторов при помощи обычных ламп дневного света, говорится в статье, опубликованной в журнале Science Advances.
"Если быть честным, то мы пытались изучить совершенно иной феномен. У нас постоянно появлялись некие помехи при замерах, которые, как мы выяснили через некоторое время, порождались одной из флуоресцентных ламп, имевшихся в лаборатории. Сначала мы были рады, что избавились от помех, а потом мы внезапно осознали, что наши лампы делали то, чего наши коллеги безуспешно пытались добиться долгое время", — заявил Эндрю Йейтс (Andrew Yeats) из университета Чикаго (США).
Йейтс и его коллеги экспериментировали с так называемыми топологическими изоляторами – относительно новым классом материалов, которые проводят электрический ток только на поверхности, а внутри остаются диэлектриками-изоляторами. Подобные вещества привлекают физиков тем, что электроны в этом поверхностном слое ведут себя чрезвычайно стабильно, что позволяет использовать их в качестве сверхнадежного "хранилища" информации в квантовых компьютерах.
Проблема заключается в том, что все попытки "скрестить" топологические изоляторы и традиционные полупроводниковые технологии, применяемые в IT, завершились неудачно – ученым не удавалось создать транзисторы и прочие "кирпичики" компьютера на базе пленок из таких веществ, не разрушая их квантовых свойств.
Группе Йейтса, благодаря счастливой случайности, удалось понять, как можно превратить подобный изолятор в транзистор, не прикасаясь к нему к нему руками или инструментами, буквальным образом "рисуя" его при помощи луча света.
Как показали "опыты" с лампой дневного света, электроны в молекулах титаната стронция, составляющего основу топологического изолятора, с которым экспериментировали авторы статьи, реагируют на ультрафиолетовое излучение с определенной длиной волны, которое вырабатывали эти флуоресцентные светильники.
Это позволяет очень точно и гибко "настраивать" энергию, которой обладают электроны, и менять их свойства таким образом, что на поверхности топологического изолятора будут возникать так называемые p-n переходы – зоны с разной проводимостью, составляющие основу всех современных транзисторов.
Подобные транзисторы, как объясняют Йейтс и его коллеги, продолжают существовать на топологическом изоляторе даже после выключения лампы, что позволяет использовать их в практических целях. Вдобавок к этому, все "рисунки" на поверхности пленки можно легко удалить, осветив ее красным светом. Как надеются ученые, столь большая гибкость и удобство для экспериментов ускорят разработку квантовых компьютеров на базе таких пленок и транзисторов.