Результаты модификации классического двухщелевого опыта Юнга, опубликованные в журнале Nature Nanotechnology, показали волновое поведение поверхностного плазмон-поляритона (surface plasmon polariton - SPP). Этот опыт напоминает исследователям и проектировщикам электроники что, хотя SPP движутся вдоль металлической поверхности, а не в проводе или оптическом волокне, они не могут каким либо образом преодолеть ограничения размера, присущие оптике.
SPP возникает при взаимодействии света с поверхностью металлической плёнки. Т.к. SPP движется по поверхности, то может улучшить поверхностную чувствительность спектроскопических измерений основанных на рассеянии света. Другое возможное применение этой технологии, известной как плазмоника, включает возможность ограничение света в очень маленькие размеры, контроль цвета материалов и передача информации в компьютерных чипах. Таким образом, плазмонику рассматривают как следующий шаг миниатюризации электроники. Эта технология могла бы обеспечить связь между наноразмерной электроникой и фотоникой. Обычные электронные устройства, в которых электрические сигналы передаются по проводам могут быть изготовлены в наномасштабе, но это приведёт к задержкам при передачи сигнала. Фотонные или волоконно-оптические устройства передают сигнал со скоростью света, но не могут быть сделаны меньше предельного размера, связанного с длиной волны передаваемого света.
Устройства плазмоники возможно смогут объединить лучшие качества обеих технологий. Высокая скорость передачи сигнала обеспечивается тем, что SPP - электромагнитная волна. А поскольку SPP движется по поверхности провода, то это даёт надежду на то, что дифракционный предел, который ограничивает размер волоконной оптики, может быть преодолён.
Rashid Zia (доцент в Brown University Stanford University) поставили перед собой цель экспериментально определить
Двухщелевой опыт Юнга обычно выполняется как демонстрация оптической дифракции, хотя его новые модификации также использовались для проверки квантового поведения электронов, атомов и даже молекул. В классическом опыте Юнга, экран освещается через непрозрачную преграду с двумя параллельными щелями. Когда одна щель закрыта, то напротив второй щели на экране видна полоса света. Когда обе щели открыты, то помимо второй светлой полосы напротив второй щели появляется дополнительная полоса света между щелями. Этот опыт демонстрирует волновые свойства света.
В своём эксперименте, Zia и Brongersma создали SPP и пропустили по золотой плёнке специальной формы (см. рис.). Плёнка находилась на стеклянной подложке и представляла собой две части соединённые двумя узкими перемычками. Эти две перемычки играли роль «щелей».
Поскольку SPP не относится к диапазону видимого света, то результат опыта не виден на «экране». Для визуализации дифракционной картины исследователи использовали фотонный сканирующий туннельный микроскоп (photon scanning tunneling microscope). Полученный результат хорошо согласовывался с предсказанием, основанным на простой аналитической модели, аналогичной используемой в обычной оптике.
Brongersma считает, что эта аналогия позволит использовать результаты десятилетий работы с диэлектрическими структурами для разработки новых устройств плазмоники.