Почва - незаменимое достояние человечества и источник его богатства. Ее существование стало важнейшим условием жизни растений, животных и микроорганизмов, обитающих на суше земного шара. ... Почвенный слой Земли кажется однообразным и малоинтересным объектом изучения лишь при поверхностном взгляде. В действительности же он не менее разнообразен и удивителен, чем мир людей, животных, растений, минералов или горных пород...
Современные исследования в области нанотехнологий все чаще требуют дополнения физического эксперимента «численным» - компьютерным моделированием атомарной структуры и эволюции нанообъекта, основанным на базовых физических законах. При условии доступности вычислительных ресурсов достаточной мощности моделирование даёт исследователю то, что часто невозможно в эксперименте: возможность проследить и понять, какие именно фундаментальные факторы обусловливают те или иные особенности поведения системы.
Электронная микроскопия, как динамично развивающаяся отрасль современной науки и технологии, включает в себя не только анализ веществ, материалов и биологических объектов. Значительные усилия ученых направлены на разработку и усовершенствование электронных и других корпускулярных микроскопов (например, протонного) и приставок к ним, методов пробоподготовки, изучение механизмов формирования изображения при взаимодействии образца с электронами, способов сбора и обработки информации, которую можно получить с помощью микроскопа.
С образованием и уничтожением экситонов связывают особенности оптических спектров наноструктур, в которых резкие линейчатые компоненты, нехарактерные для макроскопических тел, наблюдаются вплоть до комнатных температур. Установлено, что величина энергии связи экситона зависит от размера наночастицы, если размер частицы сопоставим или меньше радиуса экситона. Поэтому, получая монодисперсные коллоидные растворы наночастиц различных размеров, можно управлять энергиями экситонных переходов в широком диапазоне оптического спектра.
История фракталов началась с геометрических фракталов, которые исследовались математиками в XIX веке. Фракталы этого класса – самые наглядные, потому что в них сразу видно самоподобие. Примерами таких фракталов служат: кривые Коха, Леви, Минковского, треугольник Серпиньского, губка Менгера, дерево Пифагора (Рис.1) и др. С математической точки зрения, фрактал - это, прежде всего, множество с дробной (промежуточной, «не целой») размерностью.
Что будет, если постепенно уменьшать толщину стержня, станет ли он еще более хрупким? Именно такой вопрос задал себе в 1920 г. сотрудник Авиационного исследовательского центра в Фарнборо А.А. Гриффитс и нашел на него ответ, проведя эксперименты со стеклянными стержнями. Он обнаружив неочевидную, с первого взгляда, закономерность: при уменьшении диаметра стержня его удельная механическая прочность возрастала, причем значительно...
С древних времен человечество пытается принять однозначную систему «единиц измерения». Этим вопросом занимались правители и ученые в Древнем Китае, Греции, Персии, Риме, Англии, Феодальной Европе и на Руси. В то время эталоны единиц измерения были нехитрые: размеры органов тела королей, любимых музыкальных инструментов императоров и пр. Развитие науки, торговли и мореплавания требовало постоянных пересчетов одних мер в другие, только в Европе в XVII в. использовалось около 100 различных фунтов и 50 различных миль...
Еще со школьной скамьи мы знаем, что пространственное разрешение любого оптического метода ограничено дифракцией. Для видимого света, который и дарит нам привычную гамму цветов, предел разрешения составляет около 200 нм. Это та граница на шкале размеров, которая, словно река Лета, отделяет макро- и микромир ярких красок, от бесцветного наномира, в котором само понятие естественного спектра, казалось бы, теряет смысл. Так было раньше, но развитие современных методов исследования позволило шагнуть далеко за предел дифракции. Сегодня оптические свойства вещества в видимом диапазоне длин волн можно изучать с пространственным разрешением в десятки нанометров. Рассмотрим только два подхода, которые стали возможны благодаря развитию сканирующей зондовой микроскопии (СЗМ).
Пример короткой статьи из готовящегося издания "Нанотехнологии. Азбука для всех", описывающая один из основных элементов сканирующей зондовой микроскопии - кантилевер. Статья может быть полезна участникам Интернет-олимпиады "Нанотехнология - прорыв в Будущее".
Пример короткой статьи из готовящегося издания "Нанотехнологии. Азбука для всех", описывающая интересный класс молекул - дендримеры. Статья может быть полезна тем участникам Интернет-олимпиады "Нанотехнология - прорыв в Будущее", кто еще не решил задачу про фотоантенны.
Пример короткой статьи из готовящегося издания "Нанотехнологии. Азбука для всех", описывающая принципы действия атомно-силового микроскопа. Статья может быть полезна тем участникам Интернет-олимпиады "Нанотехнология - прорыв в Будущее", кто совсем еще не является экспертом в АСМ.
Пятнадцать лет назад специалистам калифорнийской лаборатории IBM удалось расположить 35 атомов ксенона на поверхности кристалла никеля таким образом, что на нем проявились три буквы названия компании. Это было сделано механическим способом: атом ксенона буквально стекал с наноинструмента, как капля чернил, и оказывался в одном ряду со своими собратьями. Получилась небольшая научная сенсация. Последнее открытие российских ученых из Института спектроскопии РАН тянет на сенсацию побольше, поскольку они не просто научились выводить буквы при помощи атомов, а овладели технологией воспроизводства миллионными тиражами сложных графических изображений.
Для некоторых специальностей физика – знание явлений и закономерностей – становится основой успешного существования в профессии. Моя специальность – неорганическое материаловедение. Это современная, модная специальность. И наибольшая притягательность этой специальности в том, что она дает ощущение могущества в отношении создания новых материалов с уникальными свойствами.
В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.
Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.
Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся
в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.