Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Рисунок 1. Морфология нанонитей германия перед внедрением и после внедрения лития и его экстракции. (а) Просвечивающая электронная микрофотография нанонити германия; (b) микрофотография, демонстрирующая изменения диаметра нанонити от основания (125 нм) до окончания (40 нм); (c) просвечивающая электронная микрофотография высокого разрешения, на которой представлен рост нанонитей германия вдоль направления [112] с двухнанометровым слоем GeOx на поверхности; (d) схематическое изображение электрохимического эксперимента; (e-g) типичное изменение морфологии нанонити; (f, g) деформация нанонити в процессе внедрения лития в кристаллическую фазу (a, c, e, g). После экстракции лития, нанонити становились пористыми и представляли собой аморфную фазу(b, d, f, h). Положение и распределение пор не изменялось.

Рисунок 2. Изменение микроструктуры в процессе внедрения лития в нанонити германия. Первоначальный диаметр нанонити германия составлял 39 нм. (a) внедрение лития начинается с поверхности и распространяется к центру нанонити; (b-d) образование аморфной фазы LixGe ; (d) диаметр нанонити увеличился до 67 нм, (e) а затем до 83 нм ; (i) на микрофотографии высокого разрешения представлена промежуточное соединение, образовавшееся в процессе внедрения лития. При движении от центра к поверхности наблюдаются слои с-Ge(ядро), a-LixGe (оболочка) и слои c-Li2O толщиной 5 нм.

Рисунок 3. Образование нанопор и их эволюция в процессе экстракции лития. (a-f) нуклеация нанопор на начальном этапе экстракции лития; (a) нанонить с внедренным литием; (b) нанонити, контактирующая с источником лития Li2O/Li; (c) появление нанопор в области экстракции лития (в области уменьшения объема); (d-f) распространение нанопор ; (g-j) появление нанопор по всей длине нанонити.

Рисунок 4. Эволюция микроструктуры нанонитей германия в процессе цикла. (a-h) обратимые изменения объема в четырех последовательных циклах внедрения лития и его экстракции. После внедрения лития увеличивался диаметр нанонитей, представляли собой кристаллическую фазу (a, c, e, g). После экстракции лития, нанонити становились пористыми и представляли собой аморфную фазу(b, d, f, h). Положение и распределение пор не изменялось.

Нанопоры в нанонитях Ge для литий-ионных батарей: новое слово?

Ключевые слова:  анодный материал, литий-ионные батареи, нанонити Ge, нанопоры

Опубликовал(а):  Бабынина Анастасия Владимировна

16 сентября 2011

Для литий-ионных батарей требуется разработка новых электродных материалов с увеличенной энергетической плотностью и стабильностью. Германий – один из наиболее перспективных материалов для анодных материалов с высокой объемной емкостью (второй после кремния). Несмотря на то, что емкостные характеристики германия на единицу массы ниже, чем у кремния (в основном из-за большой плотности), ряд преимуществ германия выделяет его из ряда претендентов. Во-первых, емкость германия значительно выше, чем теоретическая емкость углеродных материалов используемых в литий-ионных батареях. Во-вторых, германий обладает более высокой проводимостью из-за меньшей ширины запрещенной зоны (по сравнению с кремнием). В-третьих, скорость диффузии лития в германии в 400 раз выше, чем скорость диффузии лития в кремнии при комнатной температуре. В-четвертых, в отличие от кремния, германий не образует стабильных оксидов на поверхности, а соединение состава GeOx растворимо в воде. Однако, германий более дорогостоящий, что делает его менее популярным, чем кремний.

Авторы статьи изучают поведение нанонитей германия при внедрении в них и экстракции из них лития методом просвечивающей электронной микроскопии in situ.

Нанонити германия были синтезированы методом CVD. В типичном синтезе коллоидные частички золота (диаметром 100 нм) использовались в качестве катализатора, над которыми пропускалась газовая смесь германия (30% GeH4 в водороде) и фосфина (100 ppm в водороде) при давлении 3 Торр. Температура на протяжении первых 90 секунд, в течении которых происходила нуклеация, составляла 3650С , а во время роста (около 70 минут) - 2750С. На рисунке 1 представлены типичные образцы нанонитей германия, длина которых составляла порядка 10 мкм, диаметр у основания и у окончания значительно различался и составлял 125 нм и 40 нм, соответственно. Электронная дифракция и HRTEM подтверждают образования монокристаллических нанонитей германия, на поверхности которых присутствует 2 нм слой оксида германия GeOx.

Авторы статьи провели ряд экспериментов по внедрению лития в нанонити германия, а затем экстракцию лития из указанных объектов. В процессе внедрения лития диаметр нанонитей Ge увеличивался, наблюдалось удлинение нанонитей. (рисунок 2) При внедрения лития в нанонити монокристаллический германий переходил в аморфные нанонити (a-LixGe) типа ядро\оболочка. После чего сплав состава a-LixGe быстро закристаллизовался в монокристалл состава c-Li15Ge4.

В процессе экстракции лития из нанонитей наблюдалось уменьшение объема вблизи контакта нанонитей и источника лития (Li2O). Образование пор происходило в области уменьшения диаметра нанонитей (рисунок 3). Образование пор авторы объясняют как высокой скоростью транспорта Li+, так и быстрой агрегацией вакансий, образовавшихся в результате экстракции лития. Данные процессы являются достаточно эффективным механизмом релаксации напряжений. По причине образования пор и их быстрого увеличения, нанонить не уменьшилась до первоначального размера. Заметим, что в процессе экстракции лития пористые нанонити не надламывались. Кроме того, повторение цикла внедрения лития и его экстракции сопровождались обратимыми изменениями объема, схожими с дыханием.

Еще одним важным и интересным наблюдением автора являлось наблюдение эффекта памяти пор при повторении цикла. В процессе экстракции лития образовывалось много пор одинакового размера и формы, появляющихся на одном и том же месте (рисунок 4).

Возможным объяснением подобного феномена может служить следующее:

1) после первого цикла (когда поры были впервые образованы) диффузия лития происходила преимущественно вдоль поверхности внутренних пор, поэтому области около пор в первую очередь наполняются литием и происходит его экстракция.

2) в процессе внедрения лития поры в значительной степени заполняются, но никогда не схлопываются полностью, таким образом, когда наступает процесс экстракции лития, поры сохраняются на своем прежнем месте.

Авторы работы провели моделирование процесса образования пор в нанонитях. Основным достижением является вывод о возможности контроля пористости путем контроля подвижности допантов.

В литий-ионной батарее наличие пористой структуры может стать значительным преимуществом, так как нанопоры обеспечивают проводимость и более быстрый транспорт ионов, уменьшает механические напряжения, обеспечивается стабильность микроструктуры при повторении цикла. Таким образом, германии является прекрасным кандидатом с высокой энергетической плотностью, мощностью и механической стойкостью, что является преимуществом для литий-ионных батарей.





Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Морзянка
Морзянка

Наносистемы: физика, химия, математика (2024, Т. 15, № 6)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-6
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2024, Т. 15, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2024, Т. 15, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2024 году
коллектив авторов
29 – 31 мая пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.