Промышленная биотехнология, находящая применение в таких ключевых направлениях, как медицина и сельское хозяйство, производство химических веществ и пищевых продуктов, биоэнергетика и биоэлектроника, восстановление и защита окружающей среды, материаловедение, биогеотехнология и других, является универсальным инструментарием по борьбе со стихийным развитием цивилизации и обеспечению её управляемого устойчивого непрерывного прогрессирования.
Принимая во внимание исключительную прикладную ценность биотехнологии, представляется крайне важным проанализировать и систематизировать основные объекты и этапы биотехнологического процесса, комплексно рассмотреть базовые методы и подходы, имеющих место в промышленной биотехнологии, описать технологическое оборудование, схемы ведения работ и, соответственно, продукты, получаемые в результате биотехнологического производства.
Учитывая, что биобъекты — основополагающий элемент промышленной биотехнологии, видится целесообразным вначале коротко остановиться на их описании. В качестве биобъектов выступают одно- или многоклеточные живые организмы, функциональное предназначение которых — биосинтез необходимого продукта (продуценты) либо катализ ферментативной реакции (биокатализаторы). К биообъектам относятся макромолекулы, микро- и макроорганизмы, в частности:
- вирусы — не имеющие клеточного строения и собственного энергоснабжения мельчайшие организмы, ведущие паразитический образ жизни;
- бактерии — прокариотические (не обладающие ядром и другими мембранными органоидами) и эукариотические (содержащие в своём строении ядро и иные структуры) клетки;
- водоросли (бурые, красные, зелёные, диатомовые, синезелёные и т. п.) — группа одноклеточных, колониальных или многоклеточных организмов, обитающих, в основном, в водной среде, но также в почве, на поверхности растений и в других местах;
- лишайники — симбиотические ассоциации микроскопических грибов (микобионт) и зелёных микроводорослей и / или цианобактерий (фотобионт или фикобионт), образующие слоевища (талломы) определённой структуры;
- грибы — лишённые хлорофилла (пигмента, участвующего в фотосинтезе) организмы, усваивающие минеральные вещества непосредственно из окружающей среды, а органические — только в готовом виде;
- водные растения, пребывающие в солёной, пресной (большей частью) либо солоноватой водных средах;
- культуры клеток животного происхождения, равно как и изолированные ткани, органы или цельные тела животных;
- тотипотентные растительные клетки, сохраняющие генетическую информацию в процессе своего развития и способные, в случае наличия благоприятных условий, полностью восстановить организм.
При этом низшие растения (вирусы, бактерии, водоросли, миксомицеты, лишайники, грибы), в свою очередь, подразделяются на автотрофы (водоросли и лишайники), синтезирующие органические соединения из неорганических, и гетеротрофы (вирусы и бактерии, большинство миксомицетов и грибов), неспособные к фотосинтезу / хемосинтезу и использующие для питания органические вещества, произведённые другими организмами.
Рассмотрев объекты, которыми оперирует биотехнология, перейдём к исследованию производственного процесса (заметим, что в практической деятельности, для удобства, он часто иллюстрируется в виде последовательно составленной блок-схемы), предполагающего, в конечном счёте, получение внутри- или внеклеточного целевого продукта биосинтеза. Обычно, в классическом варианте, изучаемый процесс состоит из подготовительной, биотехнологической и заключительной стадий.
На начальной, подготовительной стадии осуществляется приготовление необходимого сырья с заданными свойствами, подразумевающее, в зависимости от целевой продукции, такие методы, как: заготовка специальной среды с нужными компонентами, стерилизация газов путём очистки от излишних веществ, подготовка посевного материала либо биокатализатора.
На основной, биотехнологической стадии, с помощью тех или иных перечисленных выше биообъектов, происходит преобразование исходного сырья в желаемый продукт. Данный этап включает в себя синтез новых органических соединений, а также процессы: биотрансформация, ферментация, биокатализ, биоокисление, метановое брожение, биокомпостирование, бактериальное выщелачивание, биосорбция, биодеградация.
На последней, заключительной стадии технологического процесса биотехнологического производства получается запроектированная готовая продукция. Однако, целевой продукт на текущем этапе изначально находится в биомассе либо жидкости. Для их разделения можно воспользоваться следующими методами: отстаивание, фильтрация (в том числе микро- и ультрафильтрация), сепарация / центрифугирование и др.
После указанных выше стадий, наступает время выделения целевого продукта. Это успешно делается экстракцией, осаждением, адсорбцией, ионным обменом и другими известными методами, характерными для внутриклеточных и внеклеточных формирований.
Полезно отметить, что, в случае необходимости удалить ненужные примеси, в производственный процесс, после стадии выделения, может быть включён этап очистки, который реализуется на основе хроматографии, диализа, кристаллизации, равно как и ректификации, ферментолиза, обратного осмоса и иных методов, приведённых для предыдущей стадии.
Завершая раздел, посвящённый хронологическим аспектам биотехнологического производственного процесса, стоит упомянуть и о возможности максимизировать выход целевого продукта (до 90—100 %) — это достигается путём его концентрирования (например, выпариванием, сушкой, нано- и гиперфильтрацией).
Касаемо оборудования, используемого в биотехнологической практике, следует сказать, что при лабораторных исследованиях, главным образом, применяют роллеры и качалки, предотвращающие посредством вращающей конструкции осаждение клеток и обеспечивающие оптимальное количество растворённого кислорода. Чтобы в периодическом и непрерывном режимах выращивать клеточные культуры и микроорганизмы в промышленных масштабах, больше подойдут ферментёры и биореакторы, где перемешивание клеток может происходить за счёт аэрирования воздуха (барботажный тип), создания направленных циркуляционных потоков (эрлифтный тип) или с помощью механических устройств.
В заключение, хотелось бы акцентировать внимание на том, что, согласно результатам проведённых автором изысканий и мнениям учёных по исследуемой тематике, перспективы промышленной биотехнологии весьма позитивны, поскольку она обладает исключительно важными преимуществами.
Вот лишь некоторые из них: широкий спектр получаемых продуктов (к примеру: газы — водород, биогаз, диоксид углерода; культуральные жидкости вместе с микроорганизмами — кефир, йогурт; твёрдые субстраты — сырная продукция, ферментированное с заквасками колбасное изделие; жидкости, полученные после отделения биомассы, — квас, вино; биопрепараты — бактериальные удобрения, эффективные средства защиты растений, пекарские дрожжи; различные биопродукты — этанол, антибиотики, аминокислоты и многое другое), экологичность и безопасность производственного процесса, умеренность стоимости подготовки и запуска биотехнологической линии, эвентуальность использования в качестве сырья низких по цене отходов сельского хозяйства и промышленности, а также, что особо ценно, возможность получать чрезвычайно востребованные вещества (белки, ДНК и т. д.), которые сложно либо, более того, вовсе не представляется реальным получить каким-то иным способом в достаточном для людских нужд объёме.