По сообщению Пресс - службы МГУ и Индикатор.ру, cотрудники факультета наук о материалах МГУ разработали новый подход, позволяющий создать рельеф на светопоглощающем слое перовскитных солнечных элементов. Это повысит эффективность поглощения солнечного излучения. Результаты работы опубликованы в журнале RCS Advances (статья доступна в свободном доступе).
Перовскитные солнечные ячейки на основе органо-неорганических материалов со структурой перовскита представляют собой новый класс фотовольтаических устройств (устройств, способных вырабатывать электрический ток под воздействием света). С момента создания первого прототипа перовскитной солнечной ячейки в 2009 году, они продемонстрировали беспрецедентный рост рекордных значений КПД, обогнав по эффективности самые распространённые поликристаллические кремниевые солнечные элементы, и сегодня их рекордные значения КПД могут превышать 25%.
Одним из подходов дальнейшего увеличения КПД солнечных элементов является создание на поверхности светопоглощающего слоя рельефа – системы чередующихся выступов и борозд, пирамидок или других структур, которые предотвращают потерю света путем отражения, как это делает зеркальная поверхность, и вызывают его рассеивание на этих неровностях (искусственных шероховатостях) поверхности, что приводит к повышению эффективности поглощения и преобразования фотонов света в электричество, то есть повышению КПД устройства в целом.
Исследователи МГУ предложили новый метод текстурирования светопоглощающего слоя, основанный на использовании уникального реакционного расплава полииодидов метиламмония (RPM), который является жидким уже при комнатной температуре и интенсивно реагирует с металлическим свинцом. В результате такой реакции напрямую и с высочайшим выходом образуется гибридный органо - неорганический перовскит отличной морфологии. Используя эти свойства, авторы исследования впервые предложили непосредственно формировать перовскитный светопоглощающий слой с заданной микроструктурой поверхности, а не модифицировать ее после получения, как это делается в большинстве традиционных случаев солнечных батарей других типов.
«Разработанный нами подход основан на явлении роста кристаллов в ограниченном пространстве [confined growth]. Чтобы получить слой перовскита с определенным рельефом поверхности, несколько капель реакционных полииодидов наносили на поверхность пленки металлического свинца и прижимали штампом с заданным рельефом. В ходе протекания химической реакции между жидкими полииодидами и свинцом растут кристаллы перовскита. Поскольку доступный для роста объём ограничен глубиной профиля рельефа штампа, кристаллы принимают форму предоставленного им объёма, полностью заполняя его. Реакция протекает очень быстро, уже через пару минут можно убрать штамп – и мы получаем слой перовскита с текстурой [профилем, рельефом], заданной штампом», — рассказал заведующий лабораторией новых материалов для солнечной энергетики факультета наук о материалах МГУ, с.н.с. химического факультета МГУ Алексей Тарасов.
Аналогичным образом, то есть с использованием рельефного штампа и жидких полииодидов, может быть заданным образом модифицирована и гладкая поверхность слоя перовскита. Предложенный новый метод синтеза является весьма перспективным и может быть использован в дальнейшем при создании различных лазерных и оптических устройств на основе гибридных перовскитов.