Окна наших домов как солнечные панели уже появились на горизонте, благодаря современным разработкам в области квантовых точек в Национальной лаборатории Лос Аламоса в сотрудничестве с итальянским Университетом Милано-Бикокка.
Этот проект демонстрирует, что светоизлучающие свойства квантовых точек могут быть использованы в солнечной энергетике, и помогают более эффективно использовать солнечный свет.
«Ключевым достижением тут является демонстрация на большой по площади люминисцентных солнечных концентраторов, которые используют последующую генерацию специально разработанных квантовых точек», - говорит Виктор Климов из Центра передовых технологий солнечной фотовольтаики в Лос Аламосе.
Квантовые точки являются ультра-маленькими частицами полупроводника, которые могут быть синтезированы почти с атомарной точностью с помощью современных методов коллоидной химии.
Цвет свечения этих точек может быть изменен достаточно просто – изменением их размеров. Цветовая настройка в сочетании с высокой эмиссионной эффективностью позволяет использовать эти свойства в дисплеях на квантовых точках.
Люминесцентный квантовый концентратор (ЛКК) представляет собой устройство управления фотонами, который выглядит как прозрачный материал, который содержит высокоэффективные излучатели, такие как молекулы-красители или квантовые точки. Солнечный свет, рассеянный в такой пластине повторно излучается в более длинном спектре и направляется к краю плиты, где установлены солнечные фотоэлементы.
Климов объясняет, что ЛКК служит светособирающей антенной, которая концентрирует солнечный свет с больших площадей на очень небольшие солнечные элементы, что гораздо увеличивает их выходную мощность.
ЛКК особенно привлекательны благодаря тому, что в дополнение к увеличению мощности, они способны реализовать интересные концепции, такие как фотовольтаическое окно, которое покрывает фасады зданий в больших объемах и площадях, преобразовывая свет в электричество.
Из-за высокой эффективности, цветонастраиваемым эмиссионным свойствам и решениям в технологичном секторе, квантовые точки являются привлекательным материалом для использования в недорогих, больших по площадям солнечных концентраторах.
Между тем, одна из проблем в такой технологии – это накладка между излучением и поглощением в самих точках, что приводит к незначительным потерям света из-за повторного рассеивания уже излученного точками света.
На картинке схематически показывается, как квантовые точки внедрены в пластик и направляют к краю пластины солнечный свет увеличивая эффективность солнечных панелей.
Чтобы преодолеть эту проблемы ученые изобрели люминесцентный солнечный концентратор на основе квантовых точек с искусственно вызванным большим сдвигом между излучением и поглощением (так называемый большой сдвиг Стокса).
Эти материалы со сдвигом Стокса представляют собой соединения кадмий-селений/кадмий-сульфид (CdSe/CdS), в которых преобладает толстый абсорбционый слой CdS, тогда как излучение происходит из тонкого слоя внешней оболочки из CdSe.
Разделение излучателя света и поглотителя света с большим спектральным сдвигом значительно снижает потери при повторном поглощении света.
Спектроскопические исследования экспериментальных образцов показало практическое отсутствие потерь при повторном поглощении на расстояниях в десятки сантиметров. Кроме этого, тесты с использованием имитирующего солнечного света показали высокие результаты захвата фотонов в примерно 10% от поглощенного света, а это соответствует практически прозрачным образцам, что идеально подходит в качестве фотовольтаических окон.
Несмотря на их высокую прозрачность, произведенные образцы показали значительное усиление солнечного потока в 4 раза. Эти удивительные результаты показывают, что технология квантовых точек со сдвигом Стокса достаточно перспективна и может применяться на больших площадях и целых фасадах зданий.
_______________________________________
от ред. статья Francesco Meinardi, Hunter McDaniel, Francesco Carulli, Annalisa Colombo, Kirill A Velizhanin, Nikolay S Makarov, Roberto Simonutti, Victor I Klimov, Sergio Brovelli Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots опубликована в журнале Nature Nanotechnology (2015) DOI: 10.1038/nnano.2015.178