Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Иллюстрация University of Rochester
Лента Мёбиуса - трехмерная структура всего с одной стороной. Иллюстрация Martin Green

Поляризацию света закрутили в ленту Мёбиуса

Ключевые слова:  Лента Мёбиуса, Поляризация света, Физика

Опубликовал(а):  Доронин Федор Александрович

01 февраля 2015

Каждый школьник на уроке геометрии слышал про ленту Мёбиуса, многие конструировали её у себя дома из бумаги, ножниц и клея. Это одно из чудес науки, которое легко воспроизвести и доказать при помощи подручных предметов, но физики решили пойти дальше: международная команда учёных собралась, чтобы "закрутить" в ленту Мёбиуса поляризацию света.

"Оптическая поляризация ― один из немногих примеров существования ленты Мёбиуса в природе, а не в классе геометрии", — поясняет ведущий автор исследования Роберт Бойд (Robert Boyd), физик из университета Рочестера.

Эксперимент по изготовлению ленты Мёбиуса из поляризации света представляет огромный интерес не только для специалистов, изучающих фундаментальное понимание оптической поляризации, но и для инженеров, занимающихся созданием сложных структур в микро- и наномасштабах.

Как поясняют учёные в пресс-релизе, свет является электромагнитной волной, а значит, он обладает поляризацией ― направление, в котором электрическая составляющая поля колеблется (обычно обозначается вектором, конец которого описывает некоторую кривую).

Знания о понятии поляризации света широко применяется в современной фундаментальной науке и высоких технологиях.

Известно, что поляризация солнечных лучей разнонаправлена в случайном порядке (векторы хаотично указывают в разные стороны и соответствующим образом двигаются), и ориентация электрического поля одного луча не зависит от соседнего и всех остальных. Однако, когда свет отражается от каких-либо однородных поверхностей или объектов, например, воды, стекла или поверхности асфальта, он приобретает определённую поляризацию.

Используя эти знания, инженеры-оптики научились делать поляризованные очки, которые способны блокировать свет с определённым направлением поляризации и уменьшать таким образом количество ослепляющих бликов.

В своём новом эксперименте Бойд и его коллеги использовали особый вид светового луча — сфокусированный лазерный, так называемый структурированный свет (structured light). Структурированный свет имеет специфическое распределение поляризации и интенсивности в световом пучке. Следовательно, электромагнитное поле осциллирует по-разному для разных частей пучка, и не всегда под прямым углом к направлению движения света, как это было бы в случае со стандартным лазерным лучом.

В высокоструктурированном пучке компоненты электрического поля могут меняться во всех трёх измерениях, что и нужно для построения ленты Мёбиуса. Физики, скомпоновав лазерные лучи с разными характеристиками, заставили их взаимодействовать друг с другом. Кроме того, учёные использовали особые оптические инструменты (например, жидкокристаллические линзы) для перенаправления и изменения характеристик света.

В результате у них получился световой луч, поляризация которого менялась в зависимости от ширины. В центре пучка он имел круговую поляризацию, а ближе к краям ― линейно поляризован (с различным направлением вектора поляризации). Подключив ещё одну линзу, физики добавили системе третье измерение и получили ленту Мёбиуса из поляризации шириной всего 200-250 микрометров.

Световые ленты Мёбиуса продемонстрировали, как электрическое поле сориентировано в каждом положении круговой траектории, относительно оси лазерного луча.

В зависимости от свойств лазерных лучей, исследователи наблюдали ленты Мёбиуса с 3 или 5 полувитками.

Работа Бойда и его коллег, по сути, показала, что теория Исаака Фройнда (Isaac Freund) из университета Бар-Илан в Израиле, выдвинутая в 2005 году, является практически реализуемой. Теоретик показал, что манипуляции с двумя лазерными лучами могут привести к тому, что ось, относительно которой колеблется их суммарное электрическое поле (тот самый вектор поляризации), будет описывать ленту Мёбиуса. Ранее учёные считали, что имеют лишь математическое описание, но никогда не получат его физическое воплощение.

Бойд пояснил в статье журнала Science, что методика, которую он использовал в своём эксперименте, имеет большие перспективы для исследований структур других видов световых пучков, для создания метаматериалов с невероятными свойствами и необычных оптических устройств.


Источник: Вести.Наука



Комментарии
Палии Наталия Алексеевна, 14 февраля 2015 20:56 

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Призмы
Призмы

Наносистемы: физика, химия, математика (2024, Т. 15, № 6)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-6
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2024, Т. 15, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2024, Т. 15, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2024 году
коллектив авторов
29 – 31 мая пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.