Как показала последняя работа ученых из США, термоэдс, возникающая в углеродных нанотрубках, может быть увеличена с помощью простого легирования. Сами исследователи считают, что полученный ими результат будет иметь важное значение для создания так называемых умных тканей, позволяющих отводить лишнее тепло, преобразуя его в электричество.
Термоэлектрические материалы позволяют преобразовывать тепло в электричество. Таким образом, их рассматривают в качестве одного из способов уменьшения глобального дефицита энергии. Они также могут использоваться для охлаждения компьютерных чипов и других электронных устройств. Кроме того, подобные материалы могут найти свое применение в автомобилях, для получения полезной энергии из «отходов» тепла в ядерных реакторах и даже для повышения эффективности солнечных батарей.
Однако для использования в реальных задачах термоэлектрические материалы должны хорошо проводить электричество, но при этом плохо проводить тепло. Также они должны иметь высокую термоэдс (или так называемый коэффициент Зеебека), которая представляет собой отношение напряжения к разности температур на концах образца.
Углеродные нанотрубки позволяют создавать хорошие термоэлекрические материалы, но до сих пор ученым не удавалось сформировать структуру, обладающую термоэдс, величина которой позволяла бы говорить о потенциальном коммерческом использовании.
Теперь же команда исследователей из Wake Forest University (США) показала, что легирование нанотрубок p- и n-примесями позволяет увеличить выходную мощность термопары из углеродных нанотрубок почти до 15 нВт (в расчете на одну термопару) при максимальной разнице температур в 50 градусов по шкале Кельвина. Эта мощность почти в 44 раза превышает измеренные ранее параметры для чистых углеродных нанотрубок. Она соответствует почти в 6 раз более высокому коэффициенту Зеебека.
Чтобы получить такую мощность на практике, ученые создали композит на основе углеродных нанотрубок и неактивного базового полимера. В качестве примеси p-типа использовался кислород (нанотрубки размещались на воздухе), а роль примеси n-типа выполнял полиэтилен. Как считают сами ученые, ключевую роль в их работе играет именно материал, обеспечивающий n-примесь, поскольку до сих пор считалось довольно трудным синтезировать нанотрубки n-типа с большой отрицательной термоэдс, которые при этом имели бы пониженную теплопроводность. Эксперименты показали, что нанотрубки, легированные p- и n-примесями, соединенные между собой, образуют готовую термопару.
Произведенные учеными улучшения термоэлектрических параметров (и выходной мощности) означают, что композиты на основе углеродных нанотрубок могут быть в перспективе использованы для создания легких, гибких и прочных термоэлектрических тканей, пригодных для применения в маломощной электронике – к примеру, в качестве инструмента для отвода лишнего тепла. Ученые уже работают над проектом такого текстиля. Их идея заключается в том, чтобы предложить ткани, которые могли бы заменить повседневные материалы (к примеру, покрытия для автомобильных сидений). Причем целью является создание достаточно дешевых аналогов существующих материалов, чтобы был стимул активно внедрять их в повседневную жизнь.
В перспективе исследователи планируют продолжить увеличивать плотность электрической мощности, получаемой при помощи их композитов на основе углеродных нанотрубок. Кроме того, они заинтересованы в создании покрытий большой площади (на данный момент самый крупный из разработанных ими образцов не превышает 5 × 5 см), которые переносили бы повседневное использование и даже чистку. Первый эксперимент в этом направлении уже был проведен: совершенно случайно один из участников группы забыл сформированный образец в кармане брюк, и он перенес как ежедневную носку, так и процесс стирки без заметного снижения мощности. Результаты измерений показали, что даже без дополнительных усовершенствований созданные композиты являются довольно прочными.
Подробные результаты работы опубликованы в журнале Journal of Applied Physics.
Журнал «Российские нанотехнологии» № 7–8 2014 год