Нанотарелки (Рис. 1) могут найти свое применение в катализе, наноэлектронике и устройствах хранения энергии (хотя, пожалуй, достаточно не скоро – прим. переводчика. Прим. ред: вообще никогда).
На сегодняшний же день их "выращивание" представляет, скорее, фундаментальный интерес. Что же в них такого интересного? Оказывается, они могут служить наглядным пособием по спиральному росту твердой фазы из раствора, являющемуся основным механизмом роста кристаллов (в том числе и с обычными, не “нано”, размерами) из раствора при малых пересыщениях {Прим. ред. Имеются в виду, в первую очередь, "неорганические" кристаллы, для "органических" часто характерно двумерное зародышеобразование при бОльших пересыщениях}.
Группа американских ученых, активно занимающаяся получением нанотарелок гидроксосульфата цинка (3Zn(OH)2*3Zn(SO4)3*0.5H2O) (структура приведена на рис. 2), использует для этих целей раствор, содержащий 3мМ сульфата цинка, 3мМ нитрата цинка и 6мМ гексаметилентетрамина. Раствор нагревается до 65 – 90 ºС в закрытой стеклянной емкости, при этом помещенная в раствор подложка из покрытого оксидом кремния "обрастает" нанотарелками гидроксисульфата цинка. Нужно сказать, что, помимо нанотарелок, вокруг винтовой дислокации в иных условиях вполне могут расти наностержни, тоже являющиеся осесимметричными структурами. Например, при отсутствии в растворе сульфат-ионов росли бы наностержни оксида цинка {Прим. ред. ... и винтовая дислокация была бы, скорее всего, ни при чем}.
Здесь все определяет соотношение скоростей роста около оси дислокации и на удалении от нее в тех или иных условиях роста (Рис. 3). Если в районе ядра дислокации рост идет намного быстрее, чем на удалении от него {Прим. ред. На самом "ядре" дислокации рост может вообще не происходить, а кристал может даже подтравливаться}, то структура не успевает разрастись вширь, и получаются нанонити. Если различие менее значительно – тоже 1D образования, наностержни. А если скорости роста примерно совпадают (или рост вдали от дислокации даже быстрее), то неминуемо получаются 2D структуры, называемые нанотарелками.
Следует заметить, что нанотарелки растут не плоскими, а в форме пирамиды с большим основанием и малой высотой. А соотношение между основанием и высотой также определяется условиями, а именно пересыщением. При малых пересыщениях встраивание в ядро дислокации, обеспечивающее рост вдоль ее оси, затруднено, и пирамида успевает значительно ушириться в основании. По мере увеличения пересыщения рост вдоль оси облегчается, и пирамида получается менее плоской.