Существуют различные способы извлечения из руды благородных металлов, таких как золото и серебро. Основным методом является химический, он основывается на окислении нерастворимых соединений благородных металлов, в дальнейшем получении их водорастворимых комплексов, сорбционном или экстракционном их выделении и освобождении целевых продуктов из комплексов. Наибольшее распространение имеет цианидный метод, заключающийся в том, что руду подвергают обработке энергичными окислителями (перманганат калия, нитрит натрия и др.). В щелочной среде, ионы благородных металлов связывают в водорастворимые цианидные комплексы добавлением цианида натрия. Комплексы сорбируют на активированном угле или ионообменных смолах с последующим выделением целевого продукта из комплекса. Данным методом добиваются 85 %-ного извлечения золота в раствор. Главным недостатком этого способа является высокая токсичность цианидов и возникающие экологические проблемы. В отработанных рудных материалов содержится большое количество цианидов, при этом присутствует некоторое количество благородных металлов (в некоторых случаях до 1,5 г на тонну). Для решения такого рода экологической проблемы и более углубленной переработки отходов рудного производства предлагаю использовать потенциал нанобиоструктур. Предлагаемый метод основан на использовании нанобиоструктур для извлечения благородных металлов и выделении из шлама цианидов (процесс децианизации) для их последующей безопасной утилизации.
Предлагаемый способ применим, прежде всего, для углубленной переработки бедных, забалансованных и потерянных руд, при освоении частично или полностью отработанных месторождений руд.(Рис. 1)
Мне видятся следующие недостатки аналогичных методов: температурная, временная и стерильность. Температурный недостаток – немаловажным фактором в предлагаемом методе является температура, т.к. основная масса перерабатываемых пород располагается на территории с низкими температурами, а процесс осуществляется при температурах не ниже + 20 по Цельсию. В моем методе, процессы предлагаю осуществлять в быстро возводимых конструкциях, например надувных куполах, с круглогодичным периодом переработки. (Рис. 2)
Временной недостаток – больший период переработки для такого рода процессов. В моем методе он компенсируется за счет круглогодичного метода переработки в первую очередь. Стерильность – нанобиоструктуры могут терять активность в нестерильных условиях, это связанно с вытеснением активных структур посторонней микрофлорой. Я предполагаю решить эту проблему путем осуществления процесса в среде агрессивной для посторонней микрофлоры, в растворе жизнедеятельности дрожжей.
Предлагаемая к разработке нанобиоструктура, в целом является нанороботом, выращенным с определенным кругом задач, которые можно задавать при выращивании. Например, для осуществления выделения благородных металлов – им необходимо задать металлорастворяющую активность именно выделяемого металла, а для децианизации – задать способность к растворению цианидов и их укрупнению для последующей фильтрации. Другими словами, нанобиоструктура будет универсальной, с «открытым кодом» позволяющим нацеливать ее на определенный вид растворения и укрупнения.
При этом среда обитания и функционирования нанобиоструктуры задается таким образом, что не позволяет функционировать в ней посторонней микрофлоры. По моему мнению, наиболее дешевым и экологическим будет раствор жизнедеятельности дрожжей (ЖД).
При всей кажущейся фантастичности данного подхода, я думаю, метод возможно осуществить. Т. к. в природе существуют аналогичные «выращенные в природе» бактериальные культуры, выделенные из золотоносного месторождения, которые растворяют золото; получение серебра - обработкой серебро содержащей руды суспензией клеток тиобактерий в питательной среде. Я предполагаю возможность создания нанобиоструктур с заданными параметрами выделения веществ. При этом метод имеет экологическую направленность и востребованность для использования. Кроме этого, он универсален
и есть возможность его использования на других экологических проблемах.
Предполагаемую структуру процесса я попыталась отразить в схеме (рис.3)
Тимирбаева Юна, ученица 7 «А» класса гимназии №44 г. Пензы