Свойства поликристаллических материалов часто определяются размером зерен и строением межзеренных границ. Особенно это проявляется в двумерных материалах, в которых даже линейный дефект может привести к разрушению кристалла. Ярким примером подобных систем является очень популярный в последнее время графен. Согласно теоретическим работам границы между бездефектными областями в графене имеют определенные электронные, магнитные, химические и механические свойства, которые могут существенно влиять на свойства материала в целом.
В работе, опубликованной в Nature, подробно охарактеризовали домены (в оригинальной статье их называют зернами-grains) в однослойных пленках графена и границы между ними. Полученные данные являются значительным шагом в понимании того, как мембраны толщиной в атомный слой могут применяться в электронных и механических устройствах.
Исследователи сначала синтезировали монослои графена методом химического осаждения из газовой фазы в таких количествах, чтобы можно было наблюдать поликристалличность. Для характеризации полученных мембран на атомном уровне использовали темнопольную растровую просвечивающую электронную микроскопию (ADF-STEM). На рисунке 1 показана граница между двумя зернами. Они разориентированы относительно друг друга под углом 270, а их граница представляет собой последовательность пятиугольников, семиугольников и искаженных шестиугольников. Согласно анализу интенсивностей атомного рассеивания границы полностью состоят из атомов углерода.
С использованием темнопольной просвечивающей микроскопии была построена карта распределения нескольких сотен доменов по положению, ориентации и форме. На полученных изображениях можно видеть, что кристаллиты имеют очень сложную форму и различную ориентацию. Интересно, что в работе показаны центры, из которых радиально расходятся зерна (рисунок 2, е). Авторы предполагают, что эти центры являются центрами зародышеобразования. Средний размер кристаллитов составляет 250 нм, кристаллиты разориентированы друг относительно друга в пределах от 0 до 300, но преимущественно 7 и 300 (рисунок 3).
Также в работе изучено влияние межзеренных границ на механические свойства однослойной пленки графена. Было показано, что при приложении механической нагрузки иглой атомно-силового микроскопа пленка раскалывается по границе раздела зерен (рисунок 4). Для этого достаточно 100 нН. Таким образом, механическая прочность графена определяется его межзеренными границами.
Для изучения влияния границ раздела на электрические свойства поликристаллического графена определяли удельное сопротивление отдельной линии раздела. Контактной литографией осажденный на медной подложке графен «нарезали» полосками шириной 3 мкм и переносили на предварительно приготовленную подложку. На подложку перед этим наносили золотые контакты и создавали выемку, благодаря которой графеновая полоска находилась в подвешенном состоянии. Готовое устройство схематически изображено на рисунке 4,с. Наличие границ раздела по идее должно приводить к резким падениям потенциала. Однако никаких падений обнаружено не было. Это свидетельствует о том, что линии раздела практически не влияют на сопротивление всего материала. Столь слабое влияние сильно контрастирует с тем, что часто наблюдают в других материалах, таких как комплексные оксиды, где наличие межзеренных границ в монокристаллах может приводить к увеличению сопротивления в миллион раз.