Биохимики всегда стремились найти наиболее доступный и "мягкий" способ проникать вглубь клеток. В частности, к настоящему времени разработаны и опробованы на практике стеклянные пипетки с толщиной наконечника до 25 нм. Однако проникновение такой пипетки вглубь клетки на расстояния более 1 мкм зачастую приводит к ее серьезному повреждению. Серьезного улучшения не удалось достичь, даже после получения углеродных нанопипеток (где в качестве шаблона вновь выступала стеклянная пипетка) c толщиной наконечника до 10 нм. Считается, что это может быть связано с конической формой наконечника. Поэтому международный коллектив исследователей решил использовать в качестве наконечника нанопипетки углеродные нанотрубки (УНТ). Для нанесения УНТ (внешний диаметр варьировался от 50 до 200 нм, а длина нанотрубок составляла десятки нанометров) авторы статьи использовали специально разработанную ими технологию (рис.1). По утверждениям авторов статьи, предложенная ими технология позволяет получать наконечники не только из нанотрубок, но и из других наноразмерных объектов.
Изменение концентрации ионов кальция в цитозоле служит индикатором механического повреждения клетки: концентрация кальция регулируется посредством механочувствительных каналов (мембранные белки), непосредственно связанных с микрофиламентами, в ответ на введение постороннего предмета внутрь клетки. Это было доказано путем введения ионов гадолиния (III), которые блокировали механочувствительные каналы, и тем самым препятствовали изменению концентрации ионов кальция в цитозоле. Чрезмерное увеличение концентрации ионов кальция в цитозоле может привести к цитотоксическому воздействию, и как следствие, к гибели клетки. При введении обычного эндоскопа с коническим наконечником вглубь клетки изменение концентрации ионов кальция может быть весьма существенным, в то же время, введение эндоскопа с наконечником из УНТ вызывает лишь незначительное и кратковременное изменение концентрации Ca2+.
Для более наглядного подтверждения авторы статьи исследовали HeLa клетки, в которых вырабатывается люминесцирующий белок EYFP-β-актин, благодаря которому возможна простая визуализация микрофиламентов - составной части цитоскелета (рис.2). На микрофотографиях отчетливо видно, что наконечник эндоскопа, проникая внутрь клетки, приводит лишь к локальным повреждениям цитоскелета, либо же вообще оставляет цитоскелет неизменным. Однако практический интерес биохимиков не ограничивается лишь проникновением сквозь клеточную мембрану, но также сфокусирован на возможности исследования отдельных клеточных органелл, в частности митохондрий. Для этого исследователи обработали участок митохондрии, в который вводится зонд, потенциал-чувствительным красителем MitoTracker Orange, а также сравнивали энергетическое состояние органеллы до и после введения зонда (рис.3). Синхронное изменение потенциала митохондриальной мембраны и концентрации ионов кальция в цитозоле свидетельствует о сохранении функциональной активности органеллы.





Просто я, например, не знаю на какой мембране локализованы эти механочувствительные трансмембранные белки. Если на внешней клеточной мембране, то не понятно, почему концентрация кальция изменяется, если на мембране внутриклеточной органеллы, то, по всей видимости, ионы кальция поступают именно из этой органеллы, например, из ГЭР.
