Благодаря постиндустриальному развитию общества и росту потребления нефти в мире, резко возрастает роль альтернативных источников энергии. Одним из важнейших видов неисчерпаемой энергии является энергия Солнца. Усилия многих учёных по всему миру направлены на усовершенствование способов превращения солнечной энергии в электрическую, то есть на создание новых солнечных модулей. Однако, так как данные солнечные модули должны производиться в промышленных масштабах, то одну из первых ролей здесь играют экономические критерии их производства. Наиболее эффективными являются солнечные батареи на основе GaAs и других пдобных полупроводников, однако ввиду достаточно большой стоимости подобных элементов, солнечные модули на основе GaAs применяются только в космической отрасли. В повседневной жизни же главную роль играют кремниевые фотоэлементы.
Швейцарские исследователи (IMT) усовершенствовали привычную технологию производства солнечных элементов на основе аморфного кремния (технология микроморфного кремния). Методом LPCVD на поверхность стекла, покрытого слоем фотопрозрачного оксида, наносили слой микрокристаллического кремния толщиной в 1-2 мкм (рис.1) {Прим. ред.: условно сказано, скорее, это контролируемая кристаллизация слоя аморфного кремния}. Он представляет из себя вертикально ориентированные микрокристаллы диаметром 10-50 нм и длиной в десятые доли микрометра (рис.2).
Кристаллический кремний – непрямозонный полупроводник с меньшей, чем у аморфного кремния шириной запрещённой зоны 1,2 eВ. Вследствие этого для достижения сравнимого КПД его слой должен быть существенно шире. В уже собранной батарее, в которой электрон-дырочные пары генерятся и в аморфном, и в микрокристаллическом слоях кремния, создаётся разность потенциалов в 1,4 В, из которых вклад микрокристаллического кремния 0,5 В.
Учёные изменили также и фотопрозрачный оксид (TCO – transparent conductive oxide), на который наносятся слои кремния. Вместо коммерчески наиболее доступного SnO2, был предложен ZnO {Прим. ред.: наверняка чем - то легирован}, который несколько лучше диоксида олова {Прим. ред.: может, все же имеется в виду ITO?} по светопропусканию (рис.3).
Технология получения микроморфного кремния позволяет увеличить КПД традиционных кремниевых солнечных фотоэлементов в 1,5 раза, с 9 до 13%, и в ближашее время останется наиболее выгодной технологией в мире по соотношению цена / эффективность.
В.В.Беликов по материалам статьи J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail1, A. Shah.