Рисунок 1. а) Схематическое изображение электрохимической ячейки. b) Электрохимическая ячейка, помещенная в раствор, содержащий глюкозу, и подключенная к внешней цепи.
Рисунок 2. а) Схематическое изображение электрохимической ячейки, подключенной к внешней цепи. b),c) Отклик биосенсора по току, измеряющего уровень содержания глюкозы, без перемешивания и при перемешивании раствора. d) Отклик pH-метра по току. e) Отклик фотонного сенсора по току.
Прогресс в разработке наноразмерных устройств различного назначения не стоит на месте. Однако не менее важно, чтобы параллельно с ними развивались столь же миниатюрные, но вместе с тем достаточно мощные источники питания. Именно недостаточная мощность - основной недостаток разработанных к настоящему времени источников питания для наноустройств. Поэтому вполне логично, что определенный интерес вызывают источники питания, используемые в живых организмах, например, молекулы глюкозы.
В частности, международный коллектив исследователей предложил электрохимическую ячейку оригинальной конструкции (рис.1). В качестве катализаторов на катоде и аноде используются лакказа и глюкозоксидаза, соответственно. Глюкозоксидаза катализирует окисление beta-D-глюкозы молекулярным кислородом, однако ее активность довольно ограничена, поскольку ее кофактор, флавинадениндинуклеотид (ФАД), закрыт белковой оболочкой. В то же время известно, что иммобилизованная на поверхности углеродной нанотрубки (УНТ) глюкозоксидаза демонстрирует биокаталитическую активность. Поэтому нанонити из композита Нафион / поливинилпирролидон ("протонный мостик"), соединяющий золотые электроды, предварительно диспергировали в растворе УНТ. Таким образом, при заправке рассматриваемой ячейки "топливом", а именно раствором содержащем глюкозу, на аноде глюкоза окисляется до глюконолактона, в то же время на катоде происходит восстановление кислорода с образованием воды.
Чтобы продемонстрировать потенциал предложенной электрохимической ячейки, авторы статьи интегрировали ее в pH-метр и биосенсор для измерения уровня содержания глюкозы. Полученные устройства продемонстрировали быстрый отклик при добавлении щелочи и раствора глюкозы соответственно (рис.2). Что же касается мощности ячейки, то, как и предполагалось, она значительно превосходит другие источники питания, например, наноразмерная солнечная батарея на основе одиночной нанонити обладает мощностью 50-200 пВт, в то время как мощность рассмотренной в статье электрохимической ячейки составляет 0.5-3 мкВт. Кроме того, ячейка может применяться для питания наноустройств, которые предназначены для использование в условиях с ограниченным доступом света, когда невозможно применение солнечных батарей.
Или, с чего и начиналась нанобиофотоника, АТФ-синтетаза в сочетании с бактериородопсином в общей мембране/липосоме. Публикации на сей счёт продолжают появляться до сих пор... (см. журнал "Российские Нанотехнологии")
Лучше не делать на веществах встречающихся в наших организмах. Чревато в перспективе большими неприятностями, по сравнению с которыми биологическое оружие мелочью покажется.
С другой стороны для имплантантов - вполне может и сгодится, если хорошо изучить реакцию организма.
Использовать лакказу - остроумное решение!
Где они её покупали?
Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь
В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.
Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.
Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся
в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.