Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Формула (1)
Формула (2)
Формула (3)
Рисунок 1 - Суть метода компенсации фазы ("Direct feed-forward method for stabilization of
CEP")
Формула (4) - Формула Брегга-Вульфа
Рисунок 2 - Схема компенсации фазы

Компенсация фазы: фемтосекундный масштаб

Ключевые слова:  фемтосекундный лазер, АОМ, фаза

Опубликовал(а):  Клюев Павел Геннадиевич

24 июня 2010

Известно, что спектр периодической последовательности импульсов фемтосекундного лазера представляет собой набор эквидистантно расположенных частот, расстояние между которыми равно частоте следования импульсов фемтосекундного лазера. Из-за хроматической дисперсии возникает сдвиг фазы несущей волны относительно фазы огибающей от импульса к импульсу.

Вследствие этого вся гребенка сдвигается относительно спектра целых гармоник частоты повторения fREP на частоту fCEO (1), где ΔφCEO - расстройка фаз несущей волны относительно фазы огибающей, которую он приобретает при полном проходе резонатора лазера в двух направлениях.

В общем случае зависимость скорости распространения спектральных компонент импульса (импульс имеет некоторый ограниченный спектр) от частоты приводит к тому, что компоненты более высоких частот (меньших длин волн) будут двигаться с меньшей групповой скоростью, соответственно меньших частот (больших длин волн) – с большей групповой скоростью. Это так называемая нормальная дисперсия, когда вторая производная от волнового числа по круговой частоте имеет положительный наклон к оси абсцисс (2,3).

Определение частотного сдвига fCEO в фемтосекундных лазерах осуществляется методом гетеродинирования. Для автоматической подстройки фазы используется система фазовой автоподстройки частоты. Фазовая автоподстройка частоты (ФАПЧ) — система автоматического регулирования, подстраивающая частоту управляемого генератора так, чтобы она была равна частоте опорного сигнала. Регулировка осуществляется благодаря наличию отрицательной обратной связи. Выходной сигнал управляемого генератора сравнивается на фазовом детекторе с опорным сигналом, результат сравнения используется для подстройки управляемого генератора.

Однако как только флуктуации фазы становятся значительными, например в Ti:Sapphire лазере, приводящими к появлению колебаний биения порядка нескольких килогерц, требуется быстродействующий механизм компенсации фазы. Система обратной связи не успевает подстраиваться под скорость изменения разности фаз огибающей и несущей. Достаточно успешной в плане компенсации фазы является так называемая система сервоконтроля. Акусто-оптический модулятор позволяет эффективно следить за изменением фазы сигнала и исправлять возникающую разницу. Но существует ряд недостатков при использовании такого метода. В частности, снижение выходной мощности лазерного излучения, изменение длительности импульсов, изменение времени обхода импульсом резонатора и другие.

Принцип действия схемы компенсации фазы, предлагаемой авторами статьи [1], показан на рисунке 1. Его суть заключается в следующем. Для компенсации сдвига фаз используется акустооптический преобразователь частоты (АОПЧ, или acousto-optic frequency shifter, AOFS). К пьезоэлектрическому модулятору, закрепленному на одной из боковых граней анизотропного кристалла плавленого кварца, подается переменное напряжение, что в свою очередь вызывает колебания акустического диапазона, распространяющиеся в кристалле. Лазерный луч, проходя через этот кристалл, испытывает брегговское рассеяние. Луч расщепляется на два (хотя порядок может быть и больше первого), один из которых продолжает двигаться в том же направлении и сохраняет свои спектральные характеристики, а другой испытывает отклонение от первоначального направления распространения, а также частотный сдвиг, который зависит от частоты акустических волн в кристалле и описывается формулой Брегга-Вульфа (4), в которой λac-длина акустической волны (период решетки в кристалле), α - угол брегговского рассеяния, λ - длина волны оптического диапазона, n - показатель преломления кристалла.

Путем подбора частоты входного сигнала AOFS fRF (обычно она находится в радиодиапазоне), так, чтобы она равнялась сдвигу частотной гребенки относительно начала координат fCEO, можно компенсировать этот сдвиг, а значит и колебания фазы в той волне, которая испытала рассеяние на решетке акустических волн AOFS (волна первого порядка). КПД достигает 60-70%, т.е. большая часть излучения лазера подвергается компенсации фазового сдвига и ее можно использовать для различных приложений. Оставшаяся часть излучения (луч нулевого порядка) служит для измерения частотного сдвига fCEO. Измеряя эту частоту (для этого используется интерферометр f-2f типа, в котором нелинейный кристалл PPLN генерирует вторую гармонику, а результат биений двух частот и дает искомое значение частотного сдвига) и подавая сигнал на AOFS, получим частотную гребенку, сдвиг которой относительно начала координат равен нулю. На рисунке 2 показана схема компенсации фазового сдвига. В условных обозначениях PPLN-periodically poled lithium niobate crystal (периодический ниобат лития) для генерации второй гармоники входного сигнала, APD-avalanche photodiode (лавинный фотодиод), DSO-digital sampling oscilloscope (цифровой осциллограф), MSF-microstructured fibre для расширения спектра на октаву, OOL-out-of-loop interferometer используется для анализа излучения (рассеянного луча первого порядка), IL-in-loop interferometer нужен для генерации входного сигнала AOFS на частоте fRF.

В качестве лазерного источника использовали фемтосекундный лазер (10 фс, Femtolasers GmbH, FEMTOSOURCE synergy). Толщина AOFS – 2 см, сделан из плавленого кварца. AOFS оптимизировали для работы в диапазоне 70+/-10 МГц, а максимальная дифракционная эффективность (часть падающего излучения, которая составила луч первого порядка) составила 70%. На выходе из AOFS каждый луч был направлен в интерферометры f-2f типа. Луч нулевого порядка использовался для синтеза входного сигнала AOFS в IL-интерферометре, а луч первого порядка использовали для шумового анализа в OOL-интерферометре. Также в последнем предусмотрена компенсация угловой дисперсии в луче первого порядка.

Таким образом, данная методика открывает новые перспективы и перед аттосекундной физикой. Если ранее длительность импульса была ограничена имеющимся частотным сдвигом fCEO, то теперь появляется возможность приблизиться вплотную к физическому пределу длительности, когда в одном импульсе будет содержаться до одного колебания электромагнитного поля. Практическая возможность получения лазеров с импульсами аттосекундной длительности, в которых напряженность электрического поля можно сравнить с напряженностью поля, действующего на электроны в атомах и молекулах, привела к новому направлению исследований, главной целью которого является исследование вещества на временных и пространственных интервалах порядка атомных.

Аттосекундные импульсы позволят не только исследовать вещество на атомных масштабах, проводить спектроскопические исследования, но и, возможно, управлять протекающими химическими реакциями. В таких сильных лазерных полях возможна реализация управляемого термоядерного синтеза, моделирование процессов, происходящих во Вселенной.

Список использованных источников

[1] Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise. Sebastian Koke, Christian Grebing, Harald Frei, Alexandria Anderson, Andreas Assion and Guenter Steinmeyer. NATURE PHOTONICS. Publihed online 9.05.2010, DOI:10.1038/NPHOTON.2010.91




Комментарии
ололо, лекции по импульсным лазерам. Хорошая статья, кстати, но ничего принципиально нового не сделали.

первый, нах

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Полимерный крокодил Гена
Полимерный крокодил Гена

Наносистемы: физика, химия, математика (2024, Т. 15, № 6)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-6
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2024, Т. 15, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2024, Т. 15, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2024 году
коллектив авторов
29 – 31 мая пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.