В последнее время особую популярность в исследовательских кругах получил синтетический подход, называемый биомиметика. Его можно кратко описать так: биомиметика представляет собой синтез материалов, сходных по структуре с природными, ожидая, что свойства искусственно синтезированного материала будут также схожи со свойствами природного. Эта тенденция может быть объяснена довольно просто: в природе существует ряд материалов, обладающих уникальными свойствами, и использование принципов организации этих структур в синтетической практике может существенно продвинуть существующие технологии вперед.
В данной статье авторы задались амбициозной целью – создать материал, который по механическим свойствам воспроизводил бы мышцу. Благодаря титину, особому белку, мышцы отличаются растяжимостью, эластичностью, высоким пределом прочности (для биоматериалов). Причина проявления таких уникальных свойств заключается в композитной структуре титина: неупорядоченные кольцевые участки полипептидной цепи чередуются с иммуноглобулиноподобными телами. Соответственно, в качестве заменителя неупорядоченных участков исследователи взяли похожий по структуре белок резилин, а вместо упорядоченных тел – хорошо изученные домены GB1. При этом можно менять число и взаимное расположение таких участков и, таким образом, влиять на структуру конечного материала. Стоит отметить, что из отдельных молекул можно собрать изотропный материал при помощи связывания отдельных молекул в трехмерные сети.
Обратимся к рис.1, на котором приведен график сила-растяжение для отдельных молекул, полученный при помощи АСМ для двух различных последовательностей доменов. На первом этапе происходит упругое растяжение белковой цепи (до L0), после чего происходит скачкообразная «раскрутка» упорядоченных доменов, что совпадает с поведением природного титина. Важно отметить обратимый характер этих деформаций, причина которого состоит в том, что при «скачке удлинения» рвутся нековалентные связи (а именно водородные), которые восстанавливаются при снятии напряжения.
После химической сшивки полученный материал прошел серию механических испытаний (рис.2). Можно видеть, что в полученном материале сочетаются интересные свойства – при малых деформациях гистерезис практически отсутствует, но в дальнейшем он значительно увеличивается и начинает эффективно поглощать энергию при циклах нагрузки-разгрузки. Упругость серии материалов существенно зависит от соотношения количества упорядоченных и неупорядоченных доменов (рис.3) и увеличивается с увеличением количества резилина. В случае чистого резилина даже при 250% деформации не наблюдается существенного гистерезиса. Рис.4, на котором отражен результат приложения циклов нагрузки-разгрузки, отражает описанный механизм деформации – при полной разгрузке остаточная деформация равна 0, что соответствует восстановлению всех водородных связей, при частичной разгрузке остаточная деформация растет с увеличением нагрузки. Механическими свойствами полученного биокомпозита можно управлять при помощи изменения ионной силы раствора за счет частичной денатурации белка (рис.5).
Данная работа служит хорошим примером удачного применения биомиметики в современном материаловедении и наглядно демонстрирует все преимущества междисциплинарного подхода. Исходная статья «Designed biomaterials to mimic the mechanical properties of muscles» была опубликована 6 мая 2010 года в Nature.