Существует множество примеров наноматериалов с практически идеальной структурой, такие как графен, углеродные нанотрубки и монокристаллические нановолокна. Их совершенство - результат множества исследований, так же как и естественная тенденция наномасшатбных систем сопротивляться дефектам, - используется во множестве областей, таких как изготовление сенсоров и транзисторов. Однако теперь многие ученые поглощены тем, чтобы создать дефекты в совершенной структуре таких материалов - и не для того, чтобы испортить, а чтобы сделать их еще лучше.
И ничего удивительного. Хотя история использования многих материалов начинается с большого шага в сторону их очистки, вскоре после этого начинаются и шаги по введению примесей. Например, использование кремния в электронике изначально не казалось перспективным, поскольку доступен был только кремний металлургической чистоты, и только спустя несколько лет упорной работы был получен кремний электронной чистоты, что привело к триумфу кремния над его полупроводниковым конкурентом, германием.
Но как только такие примеси, как кислород и углерод, были удалены из кремния, человечество начало вводить другие примеси: фосфор для придания электронной проводимости, бор для дырочной и т.д. и т.п. И пока развивались транзисторы, число таких примесей достигло сотни в одном транзисторе, а важную роль играл уже не только характер примеси, но и ее положение. Введение примесей в устройство превратилось в "инженерную" работу.
Теперь эта область достигла и наноматериалов. Недавно введением примесей был "испорчен" графен. Свойства графена уникальны из-за практически идеальной структуры. по которой электроны могут перемещаться настолько легко, что их эффективная масса практически равна нулю. Это приводит к высокой мобильности электронов и проводимости, а также к новым квантовым эффектам, что чрезвычайно привлекательно для многих областей. Однако тщательное нарушение совершенства его структуры может быть привлекательным, например, для получения электронных ловушек.
Одним из таких экспериментов было введение в графен линейных дефектов. Они образовывались спонтанно на границах между доменами графена, которые зависят от того, как графен упорядочивается на никелевой подложке, а плотность уровней напоминает таковую в металлических граничных состояниях графеновых хлопьев. Это позволяет рассчитывать на возможность использовать его в качестве металлического волокна. Кроме того, другими учеными было показано, что углерод с внедренными дефектами может обладать магнитными свойствами, что открывает ему применение в спинтронике.
Джеймс Рабо фокусирует свое внимание не на графене, а на алмазе - другой модификации углерода, - а именно на дефектах азот-вакансия, которые образуются при добавлении атома азота рядом с вакансией в решетке алмаза. Еще в 1970-х годах были обнаружены фотолюминесцентные свойства таких центров, однако эмиссия света при комнатной температуре в объемной алмазе была обнаружена только в 1997 году. Рабо с коллегами пошел еще дальше - он наблюдал люминесценцию отдельных центров, находящихся в отдельно расположенных 5-нанометровых наноалмазах, что доказывает, что подобные дефекты можно создать в чрезвычайно маленьких наночастицах.
Но не только углеродные материалы волнуют умы ученых. физики, участвующие в разработке квантовых компьютеров, занялись поиском дефектов, аналогичных дефектам "азот-вакансия" в алмазе. Другая группа ученых показала, что дефекты и недостатки упаковки в нановолокнах InAs, которые обычно образуются случайно, можно контролировать и создать таким образом сверхрешетку. Также можно и распределять по волокну квантовые точки.
Так что постепенно от химии очистки мы переходим к химии контролированного загрязнения.