Стеклянные микропипетки широко используются для инъекций внутрь клетки и исследований в области электрофизиологии, обладая наконечником размером в десятки нанометров. Но несмотря на доступность стеклянных пипеток, они обладают недостаточной твердостью. Кроме того функциональность таких пипеток ограничена природой стекла. Поэтому ведутся активные поиски альтернативных материалов для производства наноразмерных наконечников. Наиболее походящим материалом для этой цели видится углерод, ввиду высокой проводимости, твердости и биосовместимости.
Коллектив исследователей из университета Дрексела (США) предложил свой метод получения углеродных нанопипеток с контролируемой формой и размером наконечника. Для достижения этой цели использовалось контролируемое нанесение углерода внутри и снаружи стеклянных пипеток без катализатора, разложением углеводорода (метана), тем самым предотвращая загрязнение металлами. В ходе реакции температура постепенно увеличивалась до 8750С. Толщина наносимого слоя углерода регулируется изменением параметров потока газа, что позволяет получить углеродные нанопипетки с низкими углами при вершине и диаметром наконечника до 10 нм, что сближает их по размеру с наконечниками из МУНТ (рис.1). Кроме того, условия нанесения были таковы, чтобы углерод преимущественно осаждался на внутренней стенке кварцевой пипетки. Для того чтобы получить пипетку необходимой длины, использовался метод жидкого травления для удаления кварца с поверхности (рис.2). Полученные нанопипетки представляют собой разупорядоченные sp2 - углеродные сети, содержащие домены аморфного углерода и кластеры графита, поэтому необходим дополнительный отжиг при более высоких температурах для повышения упорядоченности структуры углерода, что может увеличить проводимость поверхности "нанопипеток".
Для исследования воздействия углеродных нанопипеток на исследуемую клетку измерялось содержание Ca2+ в клетке после введения пипетки, поскольку, как известно, возрастание концентрации Ca2+ в цитозоле может служить индикатором степени механической деформации. Было установлено, что изменение концентрации в случае введения углеродной пипетки значительно ниже, чем в случае стеклянного аналога (рис.3), что в свою очередь минимизирует вероятность повреждения клетки. Еще одним преимуществом углеродной нанопипетки является хорошая видимость даже в случае довольно острых наконечниках не только в просвечивающем, но и во флуоресцентном режиме (рис.4).
Предложенный в данной статье метод позволил получить углеродные проводящие, жесткие и биосовместимые нанопипетки недостижимой до этого толщины 10 нм. Остается надеяться, что в скором времени такие устройства пополнят арсенал биохимиков.