Среди работ посвященных самоорганизации коллоидных частиц (нано- и микро) в последнее время начал выделяться класс публикаций, посвященных концептуальным проблемам самоорганизации анизотропных частиц [1]. С одной стороны жажда разведывания новых ниш подстегивается прогрессом в коллоидном синтезе (нанопалочки полупроводников и металлов, тетраподы, нанопластинки, всевозможные треугольнички-призмочки), а с другой ученые задумываются о потаенных перспективах и свойствах, которые могут обнаружиться если собрать такие частицы в материалы (несомненно новые) [2]. Обобщая, если раньше обзоры были посвящены больше техническим деталям (наношарики золота пакуются в ГЦК, двухкомпонентные смеси наночастиц в NaZn13 и т.д. [3,4]), то последние обзоры больше посвящены рационализации экспериментальных фактов и попыткам их структурирования в разнообразные, порой до изощренности, системы [5].
В свою очередь, уже эти "идейные" работы провоцируют эксперименталистов обращать более пристальное внимание на самоорганизацию или даже специально планировать и разрабатывать модельные системы для экспериментального изучения этого феномена. Как раз о таком случае спешат сообщить в свежем Science группа ученых из США (Университет Колорадо и Университет Калифорнии в Лос-Анжелесе) [6].
Объект исследования - поведение 2D микрочастиц разной геометрической формы (треугольник, пятиугольник, квадрат) помещенных в жидкий кристалл 5CB (ЖК, 4-циано-4'-пентилбифенил). Задумка - спровоцировать анизотропные взаимодействия со стороны дисперсанта на коллоидные анизотропные частицы. Нематический ЖК 5CB представляет собой подходящий дисперсант, т.к. он жидкий при комнатной температуре и структурирован внутри (в отличии от воды и прочих обычных растворителей, на то он и жидкий кристалл). Молекулы ЖК ориентированы в одном направлении но как только мы помещаем внутрь него какой-то объект значительного размера (далее - коллоидная частица), который эти молекулы не могут игнорировать, то создается дефект. А раз есть дефект, то значит появляется сила со стороны системы который этот дефект пытается устранить, и в случае ЖК, эта сила анизотропна (имеет направление). Ее величина зависит от размера коллоидной частицы, ее формы и всяческих внешний факторов. Оказывается, даже для сферических частиц помещенных в такую жидкую анизотропную среду возникающая сила, направленная на как бы выталкивание этой частицы и возвращение прежнего порядка, анизотропна. В результате чего сферы собираются в цепочки. В зависимости от формы частицы, характера взаимодействия поверхности частицы с молекулами дисперсанта, эта сила может дробиться на компоненты, которые своим поведением напоминают диполи. А если есть диполи, значит есть новые взаимодействия уже этих диполей! Манипулируя этими соображениями, микрочастицами разной формы, конфокальной и поляризационной микроскопией ученым удалось наблюдать направленную агрегацию микрочастиц внутри жидкого кристалла. Что более важно, было предложено изящное физическое описание, согласно которому под действие этих сил попадают объекты в диапазоне размеров от десятков нм до десятков мкм.
[1]. S. C. Glotzer and M. J. Solomon, Nat. Mater., 2007, 6, 557-562
[2]. K. J. Stebe, E. Lewandowski and M. Ghosh, Science, 2009, 325, 159-160
[3]. http://www.nanometer.ru/2009/02/06/12339394438424_57021.html
[4]. http://www.nanometer.ru/2007/12/15/samosborka_5415.html
[5]. S. Mann, Nat. Mater., 2009, 8, 781-792
[6]. C.P. Lapointe, T.G. Mason, I.I. Smalyukh, "Shape-Controlled Colloidal Interactions in Nematic Liquid Crystals" Science, 2009, 326, 1083-1086