Наночастицы благородных металлов проявляют каталитические свойства, имеют плазмонный резонанс и "катализируют" рост нановолокон по механизму пар-жидкость-кристалл, при этом могут быть "пришиты" к биообъектам, что делает их в целом интереснейшими объектами для различных применений. Эти частицы могут быть получены по стандартным методикам в растворе, а также фото- и электрохимически. Так можно синтезировать частицы различной формы: сферы, стержни, призмы, диски и даже звездочки.
В то же время для многих применений такие наночастицы благородных металлов должны быть иммобилизированы на подложке. В этом случае они могут повысить эффективность солнечных батарей, ОСИД и детектировать биоагенты. Существует ряд путей для их синтеза, включая прикрепление к поверхности функционализированных наночастиц из раствора, литографию и самосборку, которая среди этих методов занимает особое место как способ, позволяющий выращивать наночастицы на больших площадях. К тому же частицы оказываются хорошо закреплены на поверхности и имеют преимущественную ориентацию из-за эпитаксии.
Одним из достижений в области эпитаксиальной самосборки сталл рост наночастиц золота на подложке MgAl2O4. Параметр решетки подложки, 0.808 нм, примерно вдвое больше параметра золота, 0.4078 нм. Были получены структуры на подложках с ориентацией 100, 111 и 110, которые, по наблюдению с помощью СЭМ в течение нескольких месяцев, остаются стабильными. Форма частиц совпадает с предсказанной теоретически.
Процесс нанесения включал нанесение пленки золота на подложку с последующим отжигом, который приводил к формированию наноструктуры. Толщина исходных пленок составляла 0.5-1.5 нм, отжиг проводили в потоке аргона при нагревании в течение 45 мин до 1100С, затем выдерживали 1 час, охлаждали в течение 30 мин до 1000С, выдерживали еще 1 час и затем охлаждали до комнатной температуры в течение примерно 8 часов. Соблюдение такого режима очень важно, поскольку исключение одного из шагов приводит к образованию ограненных золотых сфер непосредственно на подложке.
По данным СЭМ (Рис. 1) видно, что сферы, нанесенные на подложки каждой из ориентаций, отделены от подложки перешейком (а-с). Другим типом частиц являются одиночные "постаменты" (d-f). Эволюцию роста можно увидеть на Рис. 2, где на треугольном одиночном "постаменте" вырастает сфера. И хотя зародыш сферы находится не в центре, при росте асимметрия исчезает.
Авторы работы также моделировали рост наночастиц, исходя из предполагаемого расположения постаментов (Рис. 3). Моделирование роста сферы показано на Рис. 4. Приобретаемая при этом форма совпадает с наблюдаемой на практике.