Различные формы графитных материалов широко используются в науке и технике. В последнее время значительное внимание привлекают наноструктурированные формы материалов, имеющих атомную структуру, аналогичную графиту. К таким материалам относятся, в частности, фуллерены, углеродные нанотрубки, наноконусы. Кроме этого относительно недавно была продемонстрирована возможность получения графита в виде моно-атомных слоев (графен). Структурные характеристики таких нано-графитных материалов приводят к возникновению ряду уникальных особенностей в их физических свойствах, которые могут быть использованы для создания новых типов электронных и оптических приборов и устройств.
В настоящей работе разработан метод получения графитных материалов в виде пленок, состоящих из высокоупорядоченного графита толщиной в несколько нанометров. Основой разработанного метода является плазмохимическое осаждение углерода из смеси водорода и метана, активированной разрядом постоянного тока. В зависимости от параметров процесса синтеза таких пленок атомные слои, составляющие нанографитный материал, имеют ориентацию перпендикулярно или вдоль подложки.
На рисунке 1 представлены электронно-микроскопические изображения, демонстрирующие основные структурные особенности мезопористых нанографитных пленок, состоящих из кристаллитов с преимущественной ориентацией атомных слоев перпендикулярно подложке. На рисунке 2 представлено, полученное с помощью атомно-силовой микроскопии, изображение топологии графитной пленки нанометровой толщины, в которой атомные слои параллельны подложке. В обоих случаях наблюдается высокое кристаллографическое упорядочение графитных наноматериалов, имеющих атомарно гладкую поверхность.
Такие структурные характеристики позволяют использование этих пленок для создания приборов вакуумной и оптоэлектроники, а также перспективны для разработки новых типов электронных приборов. В качестве примера на рисунке 3 представлены фотографии вакуумных катодолюминесцентных ламп, изготовленных с использованием нанографитных мезопористых пленок в качестве холодных эмиссионных катодов. Были изготовлены также рентгеновские и индикаторные трубки. Благодаря использованию нанографитных катодов, характеристики изготовленных лабораторных прототипов ламп соответствуют лучшим параметрам светодиодных источников света, а при дальнейшей оптимизации конструкции и используемых материалов (в первую очередь катодолюмнофора) могут существенно превзойти их. Изготовленные образцы рентгеновских и индикаторных трубок также обладают рядом существенных преимуществ, включая пониженное энергопотребление, постоянную готовность к включению, возможность работы в импульсном режиме и др.
Нами была также продемонстрирована возможность использования нанографитных пленок для создания быстрых широкополосных детекторов оптического излучения. В этом случае используется уникальные электронные свойства графена, приводящие к чрезвычайно высокой подвижности носителей, баллистической проводимости и сильному электрон-фононному взаимодействию. Полученные экспериментальные данные указывают на возможность наблюдения эффекта поля в тонких графитных пленках, что позволяет создавать на их основе разнообразные электронные приборы, обладающие уникальными характеристиками (сверхвысокие частоты, малое энергопотребление) и при этом выполненные в виде гибких конструкций, устойчивых к механическим воздействиям и работоспособные в условиях повышенных температур.
Проф. А.Н. Образцов, физический факультет МГУ им. М.В. Ломоносова, НОЦ МГУ по нанотехнологиям, подготовлено в рамках Международной конференции «Высокие технологии – стратегия XXI века»