Проблема создания "гибкой электроники" является одной из наиболее актуальных проблем современного материаловедения. Подобные устройства могут применяться на различных неровных и подвижных поверхностях, например, в конечностях андроидов. Один из способов решения данной проблемы был предложен коллективом японских исследователей. Ключевым элементом в их работе являлись эластичные провода. В предыдущих работах в этой роли выступали металлические провода, использование которых хотя и привело к удовлетворительным механическим и электрическим свойствам, но было сопряжено с рядом технологических трудностей.
Основной идей, которую предложили в данной работе исследователи, является нанесение гибкой композитной пленки, обеспечивающей высокую электропроводность, на смолу, обладающую высокой эластичностью. Весь процесс получения эластичного проводника продемонстрирован на рисунке 1. Вначале готовится предварительная смесь путем смешения одностенных углеродных нанотрубок и ионной жидкости (1-бутил-3-метилимидазолин бис(трифторметилсульфонил)имида). Далее, для создания пленки полученный баки-гель (название происходит от слэнгового названия фуллерена buckyballs) перемешивается с фторированным сополимером и обрабатывается ультразвуком, а затем высушивается на воздухе. Полученная пленка наносится на смолу на основе полидиметилсилоксана.
Исследования электрических и механических свойств показали, что проводимость таких проводов составляет 57 См/см и лишь незначительно изменяется при деформации вдоль перпендикулярных осей до 38%. При деформации вдоль одной оси до 134% проводимость падает плавно в отличие от предшествующих образцов. Коммерческие варианты уже существующих проводящих резин при таких деформациях демонстрируют проводимость, непригодную для их использования в микросхемах.
Помимо этого, полученный материал демонстрируют впечатляющую надежность: проводимость практически не изменилась после 4000 растяжений на 25%, 500 растяжений на 50% и 20-50 растяжений на 70%. Но даже при растяжении более, чем на 110%, проводимость оставалась выше 1 См/см (рис. 2). Также не было обнаружено заметных изменений проводимости после одного года с момента изготовления провода, что объясняется химической устойчивостью применяемых в изготовлении провода соединений.
Основной проблемой, с которой столкнулись исследователи в данной работе, стало оптимальное соотношение нанотрубок, ионной жидкости и сополимера. Когда массовая доля ионной жидкости превышала 40%, то пленка получалась с разрывами, в то время как при массовой доле менее 10% пленка становилась слишком тонкой и хрупкой, что негативным образом сказывалось на электропроводимости. Оптимальным с точки зрения электропроводимости, оказалось массовое соотношение, при котором ионная жидкость и сополимер составляли по 20% (рис. 3). Кроме того, во всех предыдущих работах место стыка растяжимой и твердой частей всегда оставалось слабым местом конструкции. Однако в данной работе в качестве «склеивающей жидкости» применяется смесь все того же "баки-геля" с Perhexane-25B и триаллилизоциануратом, которая затем перемешивалась при слабом нагревании (рис. 1). Образовавшаяся паста продемонстрировала удовлетворительные проводящие и адгезивные свойства, позволяющие ее использовать в качестве связывающих контактов.
Используя полученные эластичные проводники и пасту, исследователи создали растяжимую органическую активную матрицу (рис. 4) размером 19 на 37 ячеек (в каждой ячейке по одному органическому транзистору). Отличительной особенностью этой микросхемы является то обстоятельство, что при деформации параметры активных компонентов (транзисторы и диоды) не изменяются, что выгодно отличает этот метод от предлагавшихся ранее.
По мнению авторов данной статьи, полученный эластичный проводник и гель на его основе – это важный шаг на пути создания «разумных» поверхностей, которые в будущем смогут взаимодействовать с человеком и окружающей средой совершенно по-новому.