В последнее время достигнут значительный прогресс в манипулировании нанообъектами на поверхности и в высоком вакууме. В то же время передвижение нанообъектов в жидкостях пока осуществимо лишь в жидкокристаллических пленках, под воздействием электрического поля, в градиенте постоянного магнитного поля или при сопутствующем химическом разложении. Приложение однородного переменного магнитного поля, реализовать которое достаточно просто, может оказаться одним из наиболее эффективных способов дистанционного управления нанообъектами в жидких средах.
Исследователи из Гарвардского университета предложили простой метод одновременного создания большого количества наноструктурированных "пропеллеров" и впервые продемонстрировали нанообъекты, положение которых в жидкости можно контролировать с точностью до микрометров.
Пропеллер, имеющий длину 1-2 мкм и 200-300 нм в диаметре, представляет собой шарик SiO2 с винтовым хвостом, покрытый с одной стороны металлическим кобальтом. Вращаясь в переменном магнитном поле, пропеллер совершает поступательное движение, погружаясь в толщу жидкости.
Для создания таких устройств была использована методика осаждения под скользящим углом, позволяющая растить большое число спиралевидных структур одновременно. Для этого на кремниевую подложку был нанесен монослой 200-300 нм шариков из оксида кремния. Электронно-лучевое осаждение SiO2 из газовой фазы под углом 87о со скоростью 3 Å/с при постоянном вращении подложки со скоростью 0,07 об/минприводило к образованию спиралевидных «хвостов» на SiO2-шариках. Таким образом на каждом квадратном сантиметре подложки удавалось вырастить до 109 винтов. Выращенные пропеллеры были переосаждены на подложку при помощи ультразвука и покрыты с одной стороны 30 нм слоем кобальта при помощи термического испарения. После напыления кобальта подложка была помещена между обкладками электромагнита таким образом, чтобы пропеллеры приобрели магнитным момент, перпендикулярный большей оси. Для отслеживания передвижения пропеллера в жидкости его вторая половина была модифицирована люминофором.
Трехмерное управление перемещением пропеллера осуществлялось с помощью трех колец Гельмгольца, генерирующих поле порядка 6 мТл частотой до 170 Гц. Наблюдать вращение винта во время движения можно при помощи детектирования частоты, с которой флюоресцирующая сторона будет «мигать», поворачиваясь неметаллизированной стороной к датчику. Таким образом было установлено, что один оборот соответствует продвижению на ~200 нм.
Были также проведены опыты по воздействию таким пропеллером на другие объекты. Винт, двигающийся со скоростью 40 мкм/с в воде, создает усилие порядка пиконьютонов. Как было показано на примере «тарана» 5 мкм частицы, этого вполне достаточно, чтобы эффективно воздействовать на микрообъекты в растворе. Видеоролик данного процесса доступен на сайте журнала.
Чтоб продемонстрировать точность управления группой таких нанообъектов, в работе приводится покадровое изображение двух движущихся рядом пропеллеров, контролируемых магнитным полем. Видно, что их траектории практически полностью совпадают. Авторы утверждают, что это первый на сегодняшний день объект субмикронного размера, передвигающийся со скоростью 40мкм/с и контролируемый с точностью до 1 мкм. Дальнейшее исследование таких объектов может привести к значительному прогрессу в медицине, фармацевтике и реологии.