В настоящее время в связи с бурным развитием компьютерных технологий встала необходимость разработки новых элементов памяти, которые оказались бы компактнее существующих. Один из желательных пределов такого «уменьшения» - это структуры, в которых элементом памяти являлась бы отдельная молекула. Как показали недавние исследования, это возможно реализовать на практике, используя кластеры железа Fe4, обладающие достаточно большим суммарным спином и анизотропией. Частицы на основе железа демонстрируют высокую стабильность по отношению к окислению, чем выгодно отличаются от других кластеров, например Mn12.
Структура образца представлена на рис. 1. Четыре атома железа располагаются в плоскости, параллельной подложке, соединенные молекулами 2-гидроксиметил-1,3-пропандиола, в то время как перпендикулярно этой плоскости расположены молекулы 11-(ацетилтио)-2,2бис(гидроксиметил)ундекан-1-ола, одна из которых осуществляет закрепление на подложке (с образованием связи Au-S). В качестве метода синтеза использовалось осаждение из раствора, причем полученные образцы представляли собой монослой.
Следует отметить, что парамагнетизм имеет место при температурах, меньших 1 К, а гистерезис появляется при еще более низких температурах - 0,5 К. Это связано, естественно, с тепловыми флуктуациями, что иллюстрирует рис.2, на котором показаны соответствующие температурные и временные зависимости.
Таким образом, дан ответ на вопрос «Можно ли создать элементы памяти размером в молекулу?». Конечно, на пути практического применения устройств с таким типом памяти находится еще много препятствий (многие из них довольно очевидны – необходимость поддержания сверхнизких температур, сложность считывания и записи и т.п.), но перспективность этого направления исследований очевидна.
Статья "Magnetic memory of a single-molecule quantum magnet wired to a gold surface" опубликована в Nature Materials