Сейчас в качестве анодных материалов для литий-ионных батарей в основном используется графит, но ученые не оставляют попыток заменить его материалом с лучшими характеристиками. Например, можно использовать оксид олова SnO2, т.к. его теоретическая ёмкость (782 мАч/г) гораздо выше ёмкости графита (372 мАч/г). К сожалению, использование SnO2 невозможно из-за сильного изменения объема оксида (около 300%) в процессе заряда/разряда батареи, что ведет к разрушению электрода.
Японские ученые решили эту проблему, создав композитный материал из нанолистов графена и наночастиц оксида олова. Ученые хотели «пересобрать» нанолисты графена в присутствии SnO2 так, чтобы ни один из компонентов не потерял своих электрохимических свойств. «Пересборка» заключается, во-первых, в пространственном ограничении оксида олова листами графена, что лимитирует изменение объема оксида, и, во-вторых, в том, что нанопоры между SnO2 и нанолистами могут играть роль буферного пространства в процессе заряда/разряда, что значительно повышает эффективность и ёмкостные свойства такого материала по сравнению с обычным SnO2.
Нанолисты графена были приготовлены в процессе химического восстановления слоистых графитных оксидных материалов. Наночастицы SnO2 были получены гидролизом SnCl4 в NaOH. Восстановленные листы графена разделили в этиленгликоле и затем их переорганизовали в присутствии SnO2, как показано на рис.1. Мольное отношение SnO2 к графену равнялось 1,5.
Данные SEM и TEM подтверждают, что ученым удалось получить именно ту структуру, на которую они рассчитывали. Наночастицы SnO2 равномерно расположены между листами графена таким образом, что образуется нанопористый композит с большим количеством пустот. Размер частиц колеблется в пределах 3,3 – 7,5 нм. Ограничение листами графена не дает этим частицам расти.
Начальная ёмкость полученного композита на основе SnO2 и нанолистов графена составила 810 мАч/г и уменьшилась до 570 мАч/г после 30 циклов (для сравнения – теоретическая емкость графита составляет 372 мАч/г). Объем оксида олова в процессе циклирования, конечно, изменяется, но благодаря своей нанопористой подвижной 3-D структуре электрод не разрушается.
Работа"Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure" была опубликована в Nano Letters.