Платина, несмотря на свою дороговизну, является уникальным материалом, широко использующимся для дожига выхлопных газов, создания низкотемператруных топливных элементов и пр. Без нее многие экологические подходы "зеленой химии" начали бы буксовать. К сожалению, наиболее эффективно все эти замечательные свойства проявляются лишь при сохранении высокой дисперсности платины, то есть при ее использовании в виде наночастиц размером 5-10 нм, нанесенных на тот или иной носитель. При повышении температуры, например, при контакте с нагретыми газами, для которых необходимо провести каталитическое превращение, а также в результате возможного саморазогрева при экзотермической реакции окисления платиновые наночастицы могут потерять свою активность (и это не считая возможной проблемы "отравления" катализатора).
Синтез каталитических систем из коллоидных растворов имеет немало преимуществ. В первую очередь это связано с возможностью в широких пределах изменять размер, форму и состав частиц в растворе. Для предотвращения агрегации синтез коллоидных частиц благородных металлов осуществляют в присутствии полимеров или органических ПАВов (поверхностно-активных веществ). Однако при температурах выше 300˚С (а именно при таких температурах катализаторы работают в промышленности) металлические частицы агрегируют из-за разрушения органических стабилизаторов.
В работе «Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions» предложено оригинальное решение этой наболевшей проблемы. Ученым удалось покрыть платиновые наночастицы, синтезированные по стандартной методике, оболочкой из мезопористого оксида кремния. Формирование оболочки из SiO2 осуществляли из раствора непосредственно на наночастицах платины. Последующих отжиг на воздухе при температуре 350˚С приводит к удалению органических молекул и формированию нанокомпозита Pt@SiO2, построенного по типу ядро/оболочка. Каталитическая активность полученных композитов мало отличается от Pt частиц, стабилизированных лишь ПАВом. Молекулы реагентов и продуктов легко проходят через разветвленную пористую оболочку SiO2, средний диаметр пор которой составляет 2,3 нм, а толщина около 17 нм.
Термическая устойчивость гибридных частиц изучалась в процессе каталитического окисления угарного газа при температурах около 300˚С. В отличие от платины без SiO2, частицы Pt@SiO2 сохраняют свою морфологию и не "слипаются" в ходе реакции. Таким образом, эффективность последующих циклов окисления практически не меняется, а срок службы катализатора значительно увеличивается.
Стабильность при высоких температурах и пористая структура, легко проницаемая для участвующих в реакции веществ, открывает огромные перспективы для использования композита Pt@SiO2 в различных каталитических реакциях.