Проблема разработки методов получения гибких солнечных батарей занимает умы многих ученых-нанотехнологов (см. пример). Существующие методики печати «с рулона на рулон» (roll-to-roll processing) вполне годятся и для таких сложных систем, что многократно увеличивает производительность процесса и снижает его себестоимость. До настоящего времени на основе гибких субстратов, таких как нержавеющая сталь и полимерные пленки, удавалось получить солнечные элементы лишь из аморфных или поликристаллических полупроводниковых материалов, что существенно снижало эффективность таких устройств по сравнению с использованием монокристаллов Si и GaAs.
В работе «Flexible Polymer-Embedded Si Wire Arrays» ученым удалось совместить высокую эффективность и гибкость солнечных элементов путем стабилизации кремниевых нитей в полимерной матрице. Массивы Si нитей были выращены по механизму "пар-жидкость-кристалл" на ориентированной подложке Si(111). В качестве прекурсора использовался SiCl4, синтез проводили при 1000˚С в атмосфере водорода. В результате удалось получить вертикально ориентированные кремниевые нити диаметром 1,5–2 мкм и длиной около 100 мкм. В качестве гибкой матрицы в работе использован полидиметилсилоксан. В ходе синтеза разбавленный раствор полимера наносили на кремниевую подложку, а затем выпаривали его и отжигали. Полимерную пленку механически отделяли от кремниевой основы с помощью бритвенного лезвия.
Полученные образцы демонстрируют высокое светопоглощение, несмотря на то, что чистый полидиметилсилоксан пропускает видимый свет, а кремниевые нити занимают лишь 6,5% площади образца. Исследования с помощью лазерной дифракции (рис. 1е) и сканирующей электронной микроскопии (рис. 2) показывают высокое упорядочение нитей в плоскости пленки. Они образуют плоскую кубическую упаковку с периодом порядка 7 мкм. Полученный материал демонстрирует хорошую проводимость вдоль направления роста нитей и большое сопротивление в перпендикулярном направлении. Толщина полимерной пленки составляет менее 50% процентов от длины Si нитей, оставляя их концы доступными для нанесения электрического контакта. Подобная морфология материала открывает большие перспективы для производства на его основе различных оптоэлектронных устройств.