Одной из важных задач в микрофотонике (microphotonics ) является создание эффективного высокоскоростного источника света, совместимого с кремневой микроэлектроникой. Такое устройство явилось бы одним из ключевых составляющих новой «оптической эры кремниевой фотоники» и нашло бы множество применений.
Несмотря на то, что кремний не является прямозонным полупроводником, он остается одним из наиболее многообещающих материалов для световых источников. Стоит отметить, что кремниевые наночастицы превосходят объемный кремний по эффективности люминесценции в 4 раза. Это связано с пространственной изоляцией носителей заряда на наночастицах. Синтез устройств на основе наночастиц кремния затруднителен, так как обычно происходит при высоких температурах, и эти устройства обладают невысокой динамикой. В отличие от оксидов редкоземельных элементов, переключение цветов в таких устройствах все еще невозможно.
Канадские ученые предложили технологию создания светодиода (light-emitting diode), включающего в себя кремний, но не имеющего вышеперечисленных недостатков. Для обеспечения быстрого переключения был предложен способ "обхода" времени естественной рекомбинации. Он основан на перемещении избыточных носителей заряда из активного региона устройства сразу же после его выключения. Время жизни носителей заряда заменили на время разрядки светодиода на основе конденсатора. Конденсатор представляет собой структуру - металл-изолятор-полупроводник. Работая в качестве светодиода, такая структура может давать интересные свойства: например, при варбировании напряжения имеет место переключение цветов (рис.1,b).
Дизайн светодиода включает в себя несколько важных моментов. Во-первых, затворный слой оксида должен быть ультратонким. В одном случае этот слой (nOx) составлял около 1 нм, в остальных случаях использовали 1 нм слой напыленного и отожженного SiOx. Во-вторых, использование золота в качестве контактного материала создает разность потенциалов, что в свою очередь повышает уровень светоизлучения. В-третьих, тонкий слой диоксида титана, мало влияющий на электрические свойства, сильно увеличивает износостойкость устройства.
Такая структура светодиода позволила достичь высоких частот включения/выключения и переключения цветов. На рисунке 1 каждый микросветодиод можно направить независимо. Такие устройства могут быть уменьшены до размеров транзистора (104нм2), требующего ток около 0,1 мкмА на каждый светодиод для поддержания той же интенсивности излучения. Следует отметить, что предложенный метод изготовления диодов позволяет создавать фотонные кристаллы и не требует высоких температур.
Работа "High-Speed Color-Switching Silicon LEDs" была опубликована в Advanced Materials.