На сегодняшний день подавляющее большинство солнечных батарей, которые можно встретить на рынке, основаны на кристаллическом кремнии, оксиде цинка, титане, однако их характеристики оставляют желать лучшего. Учёные всё больше и больше интересуются устройствами на основе тонких плёнок (так называемое второе поколение солнечных батарей) и устройствами с высокой эффективностью и малой стоимостью (третье поколение). Создание некоторых из них, конечно же, требует использования наноструктур. Удачно подобранная геометрия таких структур может сократить путь, который должен пройти носитель заряда, и соответственно, увеличить эффективность.
Группа учёных из General Electric предложила новый подход в создании солнечных батарей.
На химически очищенную фольгу из нержавеющей стали с помощью осаждения методом распыления наносился слой Ta2N толщиной 100 нм. Эта плёнка играет роль как контакта на тыльной стороне солнечной батареи, так и диффузионного барьера во время роста нанопроволоки. Затем на нанесённых каплях золота из смеси силана, водорода, HCl и триметилбора при температуре 650°С в течение 30 минут по механизму ПЖК выращивается кремниевая нанопроволока с проводимостью р-типа (диаметр ~100 нм, длина ~16 микрон). После этого проводится отжиг при 800°С с последующим удалением оксидного слоя. Затем нанопроволока методом PECVD покрывается аморфным кремнием (проводником n-типа) толщиной 40 нм. Это необходимо для создания фотоактивного р-n-перехода. Затем методом напыления наносится ITO для электрического связывания нанопроволочек. И, наконец, изготавливаются верхние электроды (рис.1). Введение в структуру солнечной батареи аморфного кремния, по мнению учёных, должно способствовать снижению безызлучательных рекомбинаций на поверхности.
В результате проведённых экспериментов учёные установили, что по большинству показателей их устройство сравнимо с коммерческими аналогами, а по некоторым даже превосходит их. К примеру, зеркальное отражение для собранной учёными солнечной батареи оказалось на порядок ниже, чем для коммерческого аналога (рис.2,3).
Однако существует множество факторов, которые могут снизить эффективность солнечной батареи: геометрия нанопроволочек, катализ роста наноструктур с помощью золота, материал контакта на тыльной стороне солнечной батареи, хотя учённые надеются, что значительное количество Ta не сможет продиффундировать в толщу кремниевого слоя.
Дальнейшие разработки в этой области, как считают учёные, помогут создать по-настоящему недорогие и высокоэффективные солнечные батареи.
Статья была опубликована в Applied Physics Letters.