Вверху: снимок дифракционной картины, отражающий структуру микроскопического объекта. Внизу: тот же объект, но отснятый с опозданием, то есть уже взорванный лазером - дифракционная картина совсем иная (фотографии H. N. Chapman)
Слева: упрощённая схема эксперимента, приведённая в релизе ливерморской лаборатории. Общий принцип на удивление прост - импульс рентгеновского лазера рассеивается на объекте и прежде, чем объект взорвётся, успевает донести его образ до "фотоаппарата". Справа: а судя по схеме, приведённой лабораторией DESY, в опыте была задействована ещё некая наклонная полупрозрачная пластина, направлявшая рассеянный пучок на фотоприёмник (иллюстрации Lawrence Livermore National Laboratory и H. N. Chapman)
Траектории атомов, вычисленные гидродинамической моделью, показывают белок с поперечником 2 нанометра, взрывающийся после того, как его облучили 20-фемтосекундным рентгеновским импульсом мощностью 12-килоэлектронвольт с диаметром луча 0,1 нанометра. Модели указывают, что изображение атомарного разрешения может быть достигнуто с импульсом длительностью до 20 фемтосекунд. Они также показывают, что молекулы воды, прицепленные к белку, замедляют его разрушение так, что и более длинные импульсы могут использоваться для съёмки. Масштабная линейка внизу - фемтосекунды (фемто - 10-15). Кривая показывает мощность импульса (иллюстрация Lawrence Livermore National Laboratory)
Ожидается, что новый рентгеновский лазер XFEL сможет даже снимать видеоролики с химическими реакциями между отдельными молекулами. Пунктирная линия - поток молекул, красным и синим показаны лучи лазера. Это упрощённая схема опыта (иллюстрация DESY)
Это только малая часть установки FLASH, позволившей получить необычные снимки (фото с сайта de.wikipedia.org)
Рентгеновский микроскоп взорвал лазером объекты наблюдения
Новый способ получения детальных изображений вирусов, бактерий и даже крупных органических молекул открыли учёные из США, Германии и Швеции. Они научились фотографировать тела нанометрового масштаба при помощи мощного ультракороткого импульса рентгеновского лазера. И не беда, что через несколько фемтосекунд объект съёмки просто исчезает, разлетевшись во все стороны облачком плазмы.
Об этом впечатляющем эксперименте поведала в последнем выпуске Nature Physics международная группа учёных во главе с Генри Чепменом (Henry Chapman) из Ливерморской национальной лаборатории (LLNL) и Яносом Хайду (Janos Hajdu) из университета Уппсалы (Uppsala University).
В эксперименте был задействован сравнительно новый (построенный в 2004 году) лазер на свободных электронах FLASH германской электронно-синхротронной лаборатории (DESY) в Гамбурге.
Проведённую недавно фотосъёмку можно назвать фотографией с самой короткой выдержкой: импульс рентгеновского лазера (с длиной волны 32 нанометра) длился всего 25 фемтосекунд. Луч проходил через объект съёмки, вкраплённый в мембрану толщиной всего 3 микрометра.
Энергия лазерного пульса нагревала образец приблизительно до 60 тысяч градусов Кельвина, так что он тут же испарялся.
Однако до того, как объект разлетался облачком плазмы, учёные ухитрялись зафиксировать дифракционную картину, по которой можно было точно восстановить "портрет" образца и его структуру.
Полученные в результате такой обработки чёткие изображения микроскопических объектов (их разрешение составило 50 нанометров) показали, что съёмка происходила действительно до того, как рентгеновский лазер успевал нанести повреждение фотографируемому объекту.
Предыдущие теоретические исследования предсказали, что можно получать образец дифракции от непрозрачных объектов. "Но оставались два важных вопроса, - говорит Хайду. - Получится ли изображение, поддающееся толкованию, от единственного и очень короткого импульса; и действительно ли дифракция передаст информацию о структуре объекта, прежде чем он будет разрушен? В нашем эксперименте мы впервые проверили всё это".
И, что самое интересное, возможности нового метода съёмки далеко не исчерпаны.
Чтобы получить изображения больших молекул с атомарным разрешением, такие эксперименты надо будет провести, используя лучи с ещё более короткими длинами волны, то есть применив не мягкий рентген, а жёсткий. Это лучи вроде тех, которые будут генерироваться с 2009 года на строящейся сейчас установке "Линейный источник когерентного света" (Linac Coherent Light Source - LCLS) в Стэнфорде или на европейском рентгеновском лазере XFEL, возводимом здесь же, в Гамбурге (он должен заработать в 2013-м). Так как новый метод, продемонстрированный в данном эксперименте, не требует никакого оптического формирования изображения (фактически у физиков получился безлинзовый микроскоп), он может быть расширен на эти лазеры с жёстким рентгеном.
Развитие же и внедрение в практику исследований такой экзотической фотографии создаст уникальные возможности для изучения структуры и динамики частиц нанометрового масштаба, включая большие биологические молекулы, без потребности в их предварительной кристаллизации, необходимой при обычном рентгеновском структурном анализе.
А это обещает революционизировать исследования структур веществ во многих областях науки (материаловедении, например), включая и биологию, и биохимию. Ведь здесь для новых исследований требуется очень высокое разрешение съёмки - как пространственное, так и временное.
Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь
В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.
Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.
Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся
в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.